

## **SNDT Women's University, Mumbai**

## Bachelor Of Science (Microbiology)

## **B.Sc. In Microbiology**

As Per NEP - 2020

## Semester – III & IV

## **Syllabus**

(WEF. 2025-2026)

### **Structure with Course Titles**

| SN                    | Courses                                                                                                       | Type of<br>Course                     | Credits | Marks | Int. | Ext |
|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|---------|-------|------|-----|
|                       | Semester III                                                                                                  |                                       |         |       |      |     |
| 30132511              | Cell Biology (Theory and Practical)                                                                           | Major (Core)                          | 4       | 100   | 50   | 50  |
| 30132512              | Design Thinking And Innovation In<br>Microbiology (Theory)                                                    | Major (Core)                          | 4       | 100   | 50   | 50  |
| 30132513              | Applied<br>Microbiology-I<br>(Theory +<br>Practical)                                                          | Major (Core)                          | 4       | 100   | 50   | 50  |
| 30332511              | General Chemistry (Theory)                                                                                    | Minor Stream                          | 2       | 50    | 0    | 50  |
| 30432511/<br>30432512 | <ul> <li>A. Microbes in environment (Theory)/</li> <li>B. Prevention of Food Spoilage<br/>(Theory)</li> </ul> | OEC                                   | 2       | 50    | 0    | 50  |
|                       |                                                                                                               | AEC<br>(Modern<br>Indian<br>Language) | 2       | 50    | 50   | 0   |
| 31332501              | Field Project in Microbiology<br>laboratories in Hospitals, Companies,<br>Clinics/ Pathology Labs             | FP                                    | 2       | 50    | 50   | 0   |
|                       |                                                                                                               | СС                                    | 2       | 50    | 50   | 0   |
|                       |                                                                                                               |                                       | 22      | 550   | 300  | 250 |

|                           | Semester IV                                                                                                                 |                                       |    |     |     |     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|-----|-----|-----|
| 40132511                  | Bacteriology (Theory + Practical)                                                                                           | Major (Core)                          | 4  | 100 | 50  | 50  |
| 40132512                  | Biochemistry (Theory)                                                                                                       | Major (Core)                          | 4  | 100 | 50  | 50  |
| 40132513                  | Applied Microbiology- II<br>(Theory + Practical)                                                                            | Major (Core)                          | 4  | 100 | 50  | 50  |
| 40432511<br>/<br>40432512 | <ul> <li>A. Health and Hygiene in Daily Life /</li> <li>B. Home Composting: Sustainable Waste Management at Home</li> </ul> | OEC                                   | 2  | 50  | 0   | 50  |
| 40732511                  | Biochemistry (Practical)<br>Mention SEC subject related to<br>your field. It will get added to the<br>basket                | SEC                                   | 2  | 50  | 0   | 50  |
|                           |                                                                                                                             | AEC<br>(Modern<br>Indian<br>Language) | 2  | 50  | 0   | 50  |
| 41532501                  | Community engagement of any kind                                                                                            | CE                                    | 2  | 50  | 50  | 0   |
|                           |                                                                                                                             | СС                                    | 2  | 50  | 50  | 0   |
|                           |                                                                                                                             |                                       | 22 | 550 | 250 | 300 |

### Exit with UG Diploma with 4 extra credits (44 + 4 credits)

### SEMESTER III

### 3.1 Major Core (4 Credits)

| Course Title                            | Cell Biology(Theory + Practical)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Credits                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course Outcomes                         | After going through the course, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 1. Understand cell structure and cellular process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                         | 2. Describe the structure and function of essential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         | macromolecules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | 3. Design and interpret experiments related to cell biology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                         | 4. Apply their knowledge to solve problems related to cellular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | process and dysfunction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Module-1 (Credit 1):                    | Structure and Organization of Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Learning                                | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Outcomes                                | 1.Identify and describe the various components of prokaryotic and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         | eukaryotic cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                         | 2.Understand the difference between plant and animal cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | 3.Illustrate the role of cell biology in biotechnology and its application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | in medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Content Outline<br>Module-2 (Credit 1): | <ul> <li>Cell Organization – Eukaryotic (Plant and animal cells)<br/>and prokaryotic Plasma membrane: Structure and<br/>transport of small molecules</li> <li>Cell Wall: Eukaryotic cell wall, Extra cellular matrix and<br/>cell matrix interactions, Cell-Cell Interactions - adhesion<br/>junctions, tight junctions, gap junctions, and<br/>plasmodesmata (only structural aspects)</li> <li>Mitochondria, chloroplasts and peroxisomes</li> <li>Cytoskeleton: Structure and organization of actin<br/>filaments, association of actin filaments with plasma<br/>membrane, cell surface protrusions, intermediate<br/>filaments, microtubules.</li> <li>Nuclear envelope, nuclear pore complex and nuclear<br/>lamina Chromatin – Molecular organization</li> <li>Nucleolus</li> </ul> |
| Cell<br>Renewal                         | Protein Sorting, transport And Cell Cycle, Cell Death and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Learning                                | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Outcomes                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1.Understand how protein targeted to specific location within the cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         | 2.Compare and contrast the different types of protein transport<br>system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                         | 3.Describe the main phases of cell cycle and events that occur during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         | each phase of cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Content Outline | <ul> <li>Ribosomes, Endoplasmic Reticulum – Structure,<br/>targeting and insertion of proteins in the ER, protein<br/>folding, processing and quality control in ER, smooth ER<br/>and lipid synthesis, export of proteins and lipids</li> <li>Golgi Apparatus – Organization, protein glycosylation,<br/>protein sorting and export from Golgi Apparatus</li> <li>Lysosomes</li> </ul> |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

|                     | Cell Signaling:                                                                                                      |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------|--|
|                     | <ul> <li>Signaling molecules and their receptors</li> </ul>                                                          |  |
|                     | <ul> <li>Function of cell surface receptors</li> </ul>                                                               |  |
|                     | <ul> <li>Pathways of intra-cellular receptors – Cyclic AMP pathway,</li> </ul>                                       |  |
|                     | cyclic GMP and MAP kinase pathway                                                                                    |  |
|                     | <ul> <li>Signaling molecules and their receptors</li> </ul>                                                          |  |
|                     | <ul> <li>Function of cell surface receptors</li> </ul>                                                               |  |
|                     |                                                                                                                      |  |
|                     | <ul> <li>Pathways of intra-cellular receptors – Cyclic AMP pathway,<br/>cyclic GMP and MAP kinase pathway</li> </ul> |  |
|                     | <ul> <li>Eukaryotic cell cycle and its regulation, Mitosis and Meiosis</li> </ul>                                    |  |
|                     | , , , , , , , , , , , , , , , , , , , ,                                                                              |  |
|                     |                                                                                                                      |  |
|                     | <ul><li>Programmed cell death</li><li>Stem cells</li></ul>                                                           |  |
|                     |                                                                                                                      |  |
| Modulo_2 (Crodit 1) | Embryonic stem cell, induced pluripotent stem cells                                                                  |  |
|                     | ): Staining Methods                                                                                                  |  |
| Learning            | After learning the module, learners will be able to -                                                                |  |
| Outcomes            | 1.Understand the different dyes interact with cellular components                                                    |  |
|                     | based on their chemical properties                                                                                   |  |
|                     |                                                                                                                      |  |
|                     | 2. Explore techniques that target specific cellular components like                                                  |  |
|                     | DNA, Proteins etc.                                                                                                   |  |
|                     | 3. Recognize changes in staining patterns.                                                                           |  |
| Content Outline     | • Study a representative plant and animal cell by microscopy.                                                        |  |
|                     | • Study of the structure of cell organelles through                                                                  |  |
|                     | electron micrographs                                                                                                 |  |
|                     | <ul> <li>Cytochemical staining of DNA – Feulgen</li> </ul>                                                           |  |
|                     | • Demonstration of the presence of mitochondria in striated                                                          |  |
|                     | muscle cells/ cheek epithelial cell using vital stain Janus                                                          |  |
|                     | Green B                                                                                                              |  |
| Module-4 (Credit 1) | Microscopic Study of Cell Division                                                                                   |  |
| Learning            | After learning the module, learners will be able to -                                                                |  |
| Outcomes            | 1.Identify and describe various stages of mitosis and meiosis                                                        |  |
|                     | 2.Observe the behaviour of chromosomes during cell division                                                          |  |
|                     | 3. Analyze and interpret data from microscopic observation of cell                                                   |  |
|                     | division                                                                                                             |  |
| Content Outline     | • Study of polyploidy in Onion root tip by colchicine treatment.                                                     |  |
|                     | • Identification and study of cancer cells by photomicrographs.                                                      |  |
|                     | <ul> <li>Study of different stages of Mitosis.</li> </ul>                                                            |  |
|                     | <ul> <li>Study of different stages of Meiosis.</li> </ul>                                                            |  |
|                     |                                                                                                                      |  |

1) Quizzes (Formative & Summative): Short, regular quizzes can assess

understanding of key concept, terminology and process.

- 2) Visual representation on parts of bacterial cell
- 3) Projects on cell biology.4) Use online resources to visualize complex cellular processes.

### **References:**

1. Hardin J, Bertoni G and Kleinsmith LJ. (2010). Becker's World of the Cell.  $8^{th}$  edition. Pearson.

2. Karp G. (2010) Cell and Molecular Biology: Concepts and Experiments.  $6^{\rm th}$  edition. John Wiley & Sons. Inc.

De Robertis, EDP and De Robertis EMF. (2006). Cell and Molecular Biology.
 8<sup>th</sup> edition. Lipincott Williams and Wilkins, Philadelphia.
 Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach.

4. Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach. 5<sup>th</sup> Edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.

### 3.2. Major (Core) (4 Credits)

| Course Credits         2 (1+1)           Course<br>Outcomes         Upon successful completion of this course, the learner will be able to           Outcomes         I. Know and apply the principles of design thinking in microbiology-<br>related contexts.           2. Identify user-centric problems in microbiology laboratories and<br>healthcare/ industrial settings.         3. Ideate innovative, practical, and frugal solutions to microbiological<br>challenges.           4. Develop and test prototypes based on real-world microbiology         related contexts.           5. Effectively communicate innovative ideas using scientific<br>reasing and<br>creative methods.         Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology           Learning         After learning the module, the learner will be able to,<br>.         After learning the module, the learner will be able to,<br>.           Outcomes         I. Explain the design thinking framework and its relevance to<br>microbiological applications.         .           2. Analyze case studies of innovations in microbiology from a<br>design<br>thinking lens.         .         Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test           6         Importance of innovation in microbiology         .         Introduction to frugal and sustainable innovations           0         Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.         .         Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.           0         Emp                                                                                                                        | Course Title     | Design Thinking and Innovation in Microbiology (Theory)                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------|
| Outcomes         1. Know and apply the principles of design thinking in microbiology-<br>related contexts.           2. Identify user-centric problems in microbiology laboratories and<br>healthcare/ industrial settings.         3. Ideate innovative, practical, and frugal solutions to microbiological<br>challenges.           4. Develop and test prototypes based on real-world microbiology<br>reasoning and<br>creative methods.         5. Effectively communicate innovative ideas using scientific<br>reasoning and<br>creative methods.           Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology         1. Explain the design thinking framework and its relevance to<br>microbiological applications.           2. Analyze case studies of innovations in microbiology from a<br>design<br>thinking lens.         5. Effectively compare thinking: Empathize, Define,<br>Ideate, Prototype, Test           6. Durotance of innovation in microbiology         9. Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test           7. Importance of innovation in microbiology         9. Introduction to frugal and sustainable innovations           8. Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.         6. Classroom Activity: User journey mapping in a microbiology lab           Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology         1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.           2. Formulate well-defined microbiology-related problem<br>statements using user perspectives         1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.           3. Too | Course Credits   | 2 (1+1)                                                                         |
| 1. Nitowalid apply the plintches of design thinking in microbiology-<br>related contexts.         2. Identify user-centric problems in microbiology laboratories and<br>healthcare/ industrial settings.         3. Ideate innovative, practical, and frugal solutions to microbiological<br>challenges.         4. Develop and test prototypes based on real-world microbiological<br>needs.         5. Effectively communicate innovative ideas using scientific<br>reasoning and<br>creative methods.         Module 1 (Credit 1) – Introduction to Design Thinking in Microbiology         Learning       After learning the module, the learner will be able to,<br>0.         0utcomes       1. Explain the design thinking framework and its relevance to<br>microbiological applications.         2. Analyze case studies of innovations in microbiology from a<br>design<br>thinking lens.         Course Outline       Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test         Inportance of innovation in microbiology       Introduction to frugal and sustainable innovations         Cass studies: rapid diagnostic kits, microbial<br>sensors, frugal bioncubators, etc.       Classroom Activity: User journey mapping in a microbiology lab         Module 2 (Credit 1) – Empathy and Problem Framing in Microbiology       Inconduct empathy-based observations and interviews to<br>understand<br>user needs.         2. Formulate well-defined microbiology-related problem<br>statements using user perspectives       Empathy techniques: interviews, shadowing, journey maps         Stakeholder identification: lab technicians,                                                                                                | Course           | Upon successful completion of this course, the learner will be able to:         |
| 2. Identify user-centric problems in microbiology laboratories and healthcare/ industrial settings.         3. Ideate innovative, practical, and frugal solutions to microbiological challenges.         4. Develop and test prototypes based on real-world microbiological needs.         5. Effectively communicate innovative ideas using scientific reasoning and creative methods.         Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Explain the design thinking framework and its relevance to microbiological applications.         2. Analyze case studies of innovations in microbiology from a design thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test         • Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbiol       1. Conduct empathy-based observations and interviews to understand user needs.         0utcomes       1. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       • Foroul at workers         • Case: course outline                                                                                                                                                                                       | Outcomes         | 1. Know and apply the principles of design thinking in microbiology-            |
| healthcare/ industrial settings.         3. Ideate innovative, practical, and frugal solutions to microbiological challenges.         4. Develop and test prototypes based on real-world microbiological needs.         5. Effectively communicate innovative ideas using scientific reasoning and creative methods.         Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Explain the design thinking framework and its relevance to microbiological applications.         2. Analyze case studies of innovations in microbiology from a design thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, I deate, Prototype, Test         • Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology lab         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       I. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives       • Tools: empathy techniques: interviews, shadowing, journey maps         Outcomes       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       <                                                                                                                                                          |                  |                                                                                 |
| challenges.         4. Develop and test prototypes based on real-world microbiological needs.         5. Effectively communicate innovative ideas using scientific reasoning and creative methods.         Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Explain the design thinking framework and its relevance to microbiological applications.         2. Analyze case studies of innovations in microbiology from a design thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test         • Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology lab         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       1. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives       • Stakeholder identification: lab technicians, patients, students, healthcare workers         • Tools: empathy maps, user personas       • Freading the wolige duagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology       • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc. <th></th> <th>healthcare/ industrial settings.</th>                                                                                                              |                  | healthcare/ industrial settings.                                                |
| needs.           5. Effectively communicate innovative ideas using scientific reasoning and creative methods.           Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology           Learning         After learning the module, the learner will be able to,           Outcomes         1. Explain the design thinking framework and its relevance to microbiological applications.           2. Analyze case studies of innovations in microbiology from a design thinking lens.           Course Outline         • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test           • Importance of innovation in microbiology         • Introduction to frugal and sustainable innovations           • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.         • Classroom Activity: User journey mapping in a microbiology lab           Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology         1. Conduct empathy-based observations and interviews to understand user needs.           2. Formulate well-defined microbiology-related problem statements using user perspectives         • Stakeholder identification: lab technicians, patients, students, healthcare workers           • Tools: empathy maps, user personas         • Freid/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.           Module 3 (Credit 1) - Ideation and Prototyping in Microbiology         • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.                                                                                                                                                  |                  |                                                                                 |
| reasoning and<br>creative methods.         Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology         Learning<br>Outcomes       After learning the module, the learner will be able to,         Outcomes       1. Explain the design thinking framework and its relevance to<br>microbiological applications.         2. Analyze case studies of innovations in microbiology from a<br>design<br>thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test         • Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology lab         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.         2. Formulate well-defined microbiology-related problem<br>statements using user perspectives       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients,<br>students, healthcare workers       • Tools: empathy maps, user personas         • Framing "How Might We" (questions relevant to<br>microbiological challenges       • Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology       • Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnos                                                                            |                  |                                                                                 |
| Module 1 (Credit 1) - Introduction to Design Thinking in Microbiology           Learning<br>Outcomes         After learning the module, the learner will be able to,           Outcomes         1. Explain the design thinking framework and its relevance to<br>microbiological applications.           2. Analyze case studies of innovations in microbiology from a<br>design<br>thinking lens.         2. Analyze case studies of design thinking: Empathize, Define,<br>Ideate, Prototype, Test           6. Importance of innovation in microbiology         • Importance of innovation in microbiology           6. Class studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.         • Classroom Activity: User journey mapping in a microbiology           1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.         1. Conduct empathy-based observations and interviews to<br>understand           0utcomes         • Empathy techniques: interviews, shadowing, journey maps           • Stakeholder identification: lab technicians, patients,<br>students, healthcare workers         • Tools: empathy maps, user personas           • Framing "How Might We" questions relevant to<br>microbiological challenges         • Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, idagnostics, etc.           Module 3 (Credit 1) – Ideation and Prototyping in Microbiology         Ideatentify in Microbiology           I Framing "How Might We"         Ideatentify in fifticiencies in sample<br>collection, hygiene, idagnostics, etc.                                                                                                                                        |                  | reasoning and                                                                   |
| Learning       After learning the module, the learner will be able to,         Outcomes       1. Explain the design thinking framework and its relevance to microbiological applications.         2. Analyze case studies of innovations in microbiology from a design thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test         Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       1. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges       • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology       Ideation and Prototyping in Microbiology                                                                                                                                                                                                                                                                                                              | Madula 1 (Cuadu  |                                                                                 |
| Outcomes       1. Explain the design thinking framework and its relevance to microbiological applications.         2. Analyze case studies of innovations in microbiology from a design thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test         Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology lab         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       I. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges       • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology       Ideation and Prototyping in Microbiology         Learning       After learning the module, the learner will be able to,                                                                                                                                                                                                                                                                                                          | •                |                                                                                 |
| microbiological applications.         2. Analyze case studies of innovations in microbiology from a design<br>thinking lens.         Course Outline       • Definition and stages of design thinking: Empathize, Define, Ideate, Prototype, Test         • Importance of innovation in microbiology       • Introduction to frugal and sustainable innovations         • Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.       • Classroom Activity: User journey mapping in a microbiology         Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology       After learning the module, the learner will be able to,         Outcomes       1. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges       • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology       After learning the module, the learner will be able to,         Outcomes       1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                       | -                |                                                                                 |
| design<br>thinking lens.Course Outline• Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test<br>• Importance of innovation in microbiology<br>• Introduction to frugal and sustainable innovations<br>• Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.<br>• Classroom Activity: User journey mapping in a microbiology<br>Learning<br>OutcomesModule 2 (Credit 1) - Empathy and Problem Framing in Microbiology<br>Learning<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.2. Formulate well-defined microbiology-related problem<br>statements using user perspectivesCourse Outline<br>• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>Learning<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                        | Outcomes         | microbiological applications.                                                   |
| Course Outline• Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test<br>• Importance of innovation in microbiology<br>• Introduction to frugal and sustainable innovations<br>• Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.<br>• Classroom Activity: User journey mapping in a microbiology labModule 2 (Credit 1) - Empathy and Problem Framing in Microbiology<br>Uuderstand<br>user needs.1.Conduct empathy-based observations and interviews to<br>understand<br>user needs.2.Course Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>Utcomes1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                                                                 |
| Course Outline• Definition and stages of design thinking: Empathize, Define,<br>Ideate, Prototype, Test<br>Importance of innovation in microbiology<br>• Introduction to frugal and sustainable innovations<br>• Case studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.<br>• Classroom Activity: User journey mapping in a microbiology<br>Learning<br>OutcomesModule 2 (Credit 1) - Empathy and Problem Framing in Microbiology<br>I. Conduct empathy-based observations and interviews to<br>understand<br>user needs.Course OutlineAfter learning the module, the learner will be able to,<br>I. Conduct empathy-based observations and interviews to<br>understand<br>user needs.Course Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |
| Ideate, Prototype, TestImportance of innovation in microbiologyIntroduction to frugal and sustainable innovationsCase studies: rapid diagnostic kits, microbial<br>sensors, frugal bioincubators, etc.Classroom Activity: User journey mapping in a microbiology labModule 2 (Credit 1) - Empathy and Problem Framing in MicrobiologyLearningOutcomesAfter learning the module, the learner will be able to,1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.2. Formulate well-defined microbiology-related problem<br>statements using user perspectivesCourse Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>OutcomesAfter learning the module, the learner will be able to,Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course Outline   |                                                                                 |
| <ul> <li>Importance of innovation in microbiology</li> <li>Introduction to frugal and sustainable innovations</li> <li>Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.</li> <li>Classroom Activity: User journey mapping in a microbiology lab</li> <li>Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>Conduct empathy-based observations and interviews to understand user needs.</li> <li>Formulate well-defined microbiology-related problem statements using user perspectives</li> <li>Course Outline</li> <li>Empathy techniques: interviews, shadowing, journey maps</li> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) - Ideation and Prototyping in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>Apply brainstorming techniques to generate multiple innovation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| <ul> <li>Introduction to frugal and sustainable innovations         <ul> <li>Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.</li> <li>Classroom Activity: User journey mapping in a microbiology lab</li> </ul> </li> <li>Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology</li> <li>Learning         <ul> <li>After learning the module, the learner will be able to,</li> <li>Conduct empathy-based observations and interviews to understand             user needs.</li> </ul> </li> <li>Formulate well-defined microbiology-related problem         statements using user perspectives</li> <li>Fourse Outline         <ul> <li>Empathy techniques: interviews, shadowing, journey maps</li> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> </ul> </li> <li>Module 3 (Credit 1) - Ideation and Prototyping in Microbiology</li> <li>Learning After learning the module, the learner will be able to,</li> <li>Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                                                                 |
| <ul> <li>Case studies: rapid diagnostic kits, microbial sensors, frugal bioincubators, etc.</li> <li>Classroom Activity: User journey mapping in a microbiology lab</li> <li>Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>Conduct empathy-based observations and interviews to understand user needs.</li> <li>Formulate well-defined microbiology-related problem statements using user perspectives</li> <li>Course Outline</li> <li>Empathy techniques: interviews, shadowing, journey maps</li> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) - Ideation and Prototyping in Microbiology</li> <li>After learning the module, the learner will be able to,</li> <li>Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| sensors, frugal bioincubators, etc.• Classroom Activity: User journey mapping in a microbiology labModule 2 (Credit 1) - Empathy and Problem Framing in MicrobiologyLearningAfter learning the module, the learner will be able to,Outcomes1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.2. Formulate well-defined microbiology-related problem<br>statements using user perspectivesCourse Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>• Learning<br>• After learning the module, the learner will be able to,<br>• 1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| <ul> <li>Classroom Activity: User journey mapping in a microbiology lab</li> <li>Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology</li> <li>Learning After learning the module, the learner will be able to,</li> <li>Outcomes 1. Conduct empathy-based observations and interviews to understand user needs.</li> <li>2. Formulate well-defined microbiology-related problem statements using user perspectives</li> <li>Course Outline • Empathy techniques: interviews, shadowing, journey maps</li> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) - Ideation and Prototyping in Microbiology</li> <li>After learning the module, the learner will be able to,</li> <li>Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                                                                 |
| Module 2 (Credit 1) - Empathy and Problem Framing in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Conduct empathy-based observations and interviews to understand user needs.         2. Formulate well-defined microbiology-related problem statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers         • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges         • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) - Ideation and Prototyping in Microbiology         After learning the module, the learner will be able to,         Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| Learning<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.Course Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in Microbiology<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Module 2 (Credit |                                                                                 |
| Outcomes       1. Conduct empathy-based observations and interviews to<br>understand<br>user needs.         2. Formulate well-defined microbiology-related problem<br>statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients,<br>students, healthcare workers         • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to<br>microbiological challenges         • Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) – Ideation and Prototyping in Microbiology         Learning         Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                |                                                                                 |
| understand<br>user needs.2. Formulate well-defined microbiology-related problem<br>statements using user perspectivesCourse Outline• Empathy techniques: interviews, shadowing, journey maps<br>• Stakeholder identification: lab technicians, patients,<br>students, healthcare workers<br>• Tools: empathy maps, user personas<br>• Framing "How Might We" questions relevant to<br>microbiological challenges<br>• Field/lab interaction: identifying inefficiencies in sample<br>collection, hygiene, diagnostics, etc.Module 3 (Credit 1) - Ideation and Prototyping in MicrobiologyLearning<br>OutcomesAfter learning the module, the learner will be able to,<br>1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                                                                 |
| 2. Formulate well-defined microbiology-related problem statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers         • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges         • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) – Ideation and Prototyping in Microbiology         Learning         Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                                                                 |
| Statements using user perspectives         Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers         • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges         • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) – Ideation and Prototyping in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | user needs.                                                                     |
| Course Outline       • Empathy techniques: interviews, shadowing, journey maps         • Stakeholder identification: lab technicians, patients, students, healthcare workers       • Tools: empathy maps, user personas         • Framing "How Might We" questions relevant to microbiological challenges       • Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) – Ideation and Prototyping in Microbiology       After learning the module, the learner will be able to,         Outcomes       1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 2. Formulate well-defined microbiology-related problem                          |
| <ul> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) – Ideation and Prototyping in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>1. Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | statements using user perspectives                                              |
| <ul> <li>Stakeholder identification: lab technicians, patients, students, healthcare workers</li> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) – Ideation and Prototyping in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>1. Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Course Outline   | <ul> <li>Empathy techniques: interviews, shadowing, journey maps</li> </ul>     |
| students, healthcare workers         Tools: empathy maps, user personas         Framing "How Might We" questions relevant to microbiological challenges         Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.         Module 3 (Credit 1) – Ideation and Prototyping in Microbiology         Learning       After learning the module, the learner will be able to,         Outcomes       1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| <ul> <li>Tools: empathy maps, user personas</li> <li>Framing "How Might We" questions relevant to<br/>microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample<br/>collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) – Ideation and Prototyping in Microbiology</li> <li>Learning</li> <li>After learning the module, the learner will be able to,</li> <li>1. Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                                                                 |
| <ul> <li>Framing "How Might We" questions relevant to microbiological challenges</li> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) – Ideation and Prototyping in Microbiology</li> <li>Learning After learning the module, the learner will be able to,</li> <li>Outcomes 1. Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                                                 |
| <ul> <li>Field/lab interaction: identifying inefficiencies in sample collection, hygiene, diagnostics, etc.</li> <li>Module 3 (Credit 1) – Ideation and Prototyping in Microbiology</li> <li>Learning After learning the module, the learner will be able to,</li> <li>Outcomes 1. Apply brainstorming techniques to generate multiple innovative</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | <ul> <li>Framing "How Might We" questions relevant to</li> </ul>                |
| collection, hygiene, diagnostics, etc.Module 3 (Credit 1) – Ideation and Prototyping in MicrobiologyLearningAfter learning the module, the learner will be able to,Outcomes1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  | microbiological challenges                                                      |
| Module 3 (Credit 1) – Ideation and Prototyping in MicrobiologyLearningAfter learning the module, the learner will be able to,Outcomes1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | <ul> <li>Field/lab interaction: identifying inefficiencies in sample</li> </ul> |
| LearningAfter learning the module, the learner will be able to,Outcomes1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | collection, hygiene, diagnostics, etc.                                          |
| Outcomes         1. Apply brainstorming techniques to generate multiple innovative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Module 3 (Credit | 1) – Ideation and Prototyping in Microbiology                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Learning         | After learning the module, the learner will be able to,                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outcomes         |                                                                                 |
| 2. Build low-fidelity prototypes to address microbiology-focused                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                                                 |
| challenges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                                                 |

| Course Outline   | <ul> <li>Ideation tools: SCAMPER, mind mapping, reverse brainstorming</li> </ul>    |
|------------------|-------------------------------------------------------------------------------------|
|                  | <ul> <li>Innovation themes: diagnostic tools, sample handling, water</li> </ul>     |
|                  | testing, hygiene indicators                                                         |
|                  | <ul> <li>Prototype development: sketching, modeling with basic materials</li> </ul> |
|                  |                                                                                     |
|                  | roost caraboard, algicarmockaps, simple sensors of                                  |
|                  | Arduino (if applicable)                                                             |
|                  | <ul> <li>Group activity: Build and document an early-stage</li> </ul>               |
|                  | prototype addressing a user-defined problem                                         |
| Module 4 (Credit | 1) – Testing, Feedback, and Communication                                           |
| Learning         | After learning the module, the learner will be able to,                             |
| Outcomes         | 1. Test prototypes, collect feedback, and refine designs iteratively.               |
|                  | 2. Present solutions with clarity, backed by user insights and                      |
|                  | scientific                                                                          |
|                  | rationale.                                                                          |
| Course Outline   | <ul> <li>Usability testing: feedback collection tools (checklists,</li> </ul>       |
|                  | interviews, observations)                                                           |
|                  | <ul> <li>Redesign and refinement cycles</li> </ul>                                  |
|                  | <ul> <li>Preparing a final pitch: visual presentation, storytelling, and</li> </ul> |
|                  |                                                                                     |
|                  | scientific explanation                                                              |
|                  | <ul> <li>Peer feedback, expert review, and final demonstrations</li> </ul>          |
|                  | Poster + live demo presentation                                                     |

### 1. Problem-Solving Case Study

### (Individual/Group) Weightage: 15%

#### Task:

Identify a microbiology-related real-world issue (e.g., hospital-acquired infections, antibiotic resistance, biodegradable waste management) and apply the design thinking framework to propose a viable, innovative microbiological solution.

#### **Deliverables:**

- Written report (Design Thinking template: Empathize  $\rightarrow$  Test)
- Poster or infographic summarizing the innovation
- Peer evaluation form

### 2. Innovation Journal

### / Logbook

### Weightage: 10%

### Task:

Maintain a weekly journal documenting ideation, background research, brainstorming, and reflections during the course/project.

### Includes:

- Microbial concepts explored
- Ideas tested (successes/failures)
- Ethical/environmental considerations

### 3. Prototype Development and

### **Presentation Weightage:** 20%

### Task:

Develop a low-cost prototype, model, or simulation that demonstrates your proposed microbial innovation. Examples:

- DIY biofilm detector
- Home composting with microbial starter cultures
- Antibacterial coating from natural sources

#### **Presentation Components:**

- 3-minute pitch video or live demo
- Visual storyboard or flowchart
- Q&A session with feedback

### 4. Peer Collaboration

#### Assignment

#### Weightage: 10%

#### Task:

Work in pairs or small teams to peer-review another group's project using a rubric focused on innovation, feasibility, and scientific merit. Provide constructive feedback and suggestions for improvement.

### 5. Micro-Innovation Hackathon / Pitch Event (Optional but high-impact)

Weightage: 15% (bonus or main CCE item) Format:

Time-bound (e.g., 24–48 hours) event where students brainstorm and pitch microbiology-based solutions to specific challenges (e.g., water purification, food waste, infection control). Judges can be faculty or industry experts.

### Evaluation Rubric (Suggested Criteria):

| Criteria                        | Description                                              | Marks            |
|---------------------------------|----------------------------------------------------------|------------------|
| Problem Identification          | Clarity and relevance of the microbial problem addressed | 10               |
| Scientific Understanding        | Application of microbiology concepts                     | 15               |
| Innovation & Creativity         | Uniqueness and feasibility of the solution               | 20               |
| Prototype/Design Model          | Functionality, relevance, low-cost, etc.                 | 20               |
| Communication & Presentation    | Clarity, visuals, pitch effectiveness                    | 15               |
| Collaboration                   | Teamwork and peer review contribution                    | 10               |
| Reflection & Iteration<br>Total | Learning from failure and feedback                       | 10<br><b>100</b> |

### **References & Resources:**

#### Books:

- Brown, Tim. Change by Design (Harvard Business Press, 2009) Design Thinking framework
- Krathwohl, Bloom Taxonomy of Educational Objectives (useful for CCE design)
- 3. Pelczar, Chan, Krieg. *Microbiology: Concepts and Applications* foundational microbiology
- 4. Madigan, Martinko, et al. Brock Biology of Microorganisms

### Articles/Online:

- IDEO U: https://www.ideou.com/pages/design-thinking
   "Design Thinking in STEM Education" *International Journal of STEM Education Microbe Magazine* (by American Society for Microbiology): https://asm.org/Magazine
   *Journal of Microbiological Methods*

### 3.3 Major Core (4 Credits)

| Course Title        | Applied Microbiology- I (Theory + Practical)                                                                       |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------|--|
|                     |                                                                                                                    |  |
| Course Credits      | 2+2                                                                                                                |  |
| Course Out comes    | After going through the course, learners will be able to,                                                          |  |
|                     | □□ Undergo different staining procedures                                                                           |  |
|                     | □□ Acquainted clinical specimen collection, transportation                                                         |  |
|                     | and lab diagnosis. $\Box \Box$ Demonstrate various Sterilization and disinfectant                                  |  |
|                     | techniques.                                                                                                        |  |
|                     | $\Box$ Understand the advance microbiological instrumentation                                                      |  |
| Module 1 (Credit 1) |                                                                                                                    |  |
| Learning Outcomes   | After learning the module, learners will be able to:                                                               |  |
|                     | 1. To learn different staining procedures used in the study                                                        |  |
|                     | of morphological and structural aspects of bacteria                                                                |  |
|                     | 2.To understand the concepts of aseptic techniques in                                                              |  |
|                     | bacterial                                                                                                          |  |
| Content Outline     | cultivation and enumeration.                                                                                       |  |
| content Outime      | <ul> <li>Microscopy and Staining:</li> <li>Microscopy - History of microscopy, Optical spectrum, Lenses</li> </ul> |  |
|                     | and mirrors: Simple and compound light microscope, Dark                                                            |  |
|                     | field Microscopy,                                                                                                  |  |
|                     | <ul> <li>Staining procedures -Dyes and stains: Types,</li> </ul>                                                   |  |
|                     | Physicochemical basis, Fixatives, Mordants, Decolorizers,                                                          |  |
|                     | Simple and differential staining, Special staining (Cell wall,                                                     |  |
|                     | Capsule, Lipid granules, Spores & Metachromatic granules)                                                          |  |
|                     | <ul> <li>Biosafety In Microbiology - Means of laboratory</li> </ul>                                                |  |
|                     | infections, Potentially hazardous procedures, Training                                                             |  |
|                     | of personnel, Laboratory procedures.                                                                               |  |
| Module 2 (Credit 1) |                                                                                                                    |  |
| Learning Outcomes   | After learning the module, learners will be able to:                                                               |  |
|                     | 1. To understand different methods of sterilization                                                                |  |
|                     | and disinfection.                                                                                                  |  |
|                     | 2. To learn different instruments that assist in the                                                               |  |
|                     | microbiology                                                                                                       |  |
|                     | laboratory.                                                                                                        |  |

| Content Outline | • <b>Definition</b> of frequently used terms & Rate of microbial death,  |
|-----------------|--------------------------------------------------------------------------|
| content outline |                                                                          |
|                 | Factors affecting the effectiveness of antimicrobial agents &            |
|                 | Properties of an ideal disinfectant.                                     |
|                 | • Evaluation of disinfectant -Tube dilution & Agar plate                 |
|                 | techniques, Phenol coefficient etc., Tissue toxicity index.              |
|                 | <ul> <li>Physical methods of microbial control –</li> </ul>              |
|                 | a) Dry & moist heat – mechanisms, instruments, uses                      |
|                 | and their operations                                                     |
|                 | <ul> <li>b) Electromagnetic radiations – Ionizing radiations,</li> </ul> |
|                 | mechanisms –advantages & disadvantages                                   |
|                 | c) Bacteria proof filters                                                |
|                 | d) Low temperature                                                       |
|                 | e) Osmotic pressure                                                      |
|                 | f) Desiccation                                                           |
|                 | • Chemical methods of microbial control - mechanism &                    |
|                 | advantages & disadvantages (if any) applications.                        |
|                 | a) Phenolics                                                             |
|                 | b) Alcohols                                                              |

|                     | · · · · · · · · · · · · · · · · · · ·                                                                                                               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | c) Heavy metals and their compounds                                                                                                                 |
|                     | d) Halogens<br>e) Quaternary ammonium compounds                                                                                                     |
|                     | f) Dyes                                                                                                                                             |
|                     | g) Surfaces active agents/Detergents                                                                                                                |
|                     | h) Aldehydes                                                                                                                                        |
|                     | i) Peroxygens                                                                                                                                       |
| Module 3 (Credit 1) |                                                                                                                                                     |
| Learning Outcomes   | After learning the module, learners will be able to:                                                                                                |
|                     | 1. Evaluate bacterial microscopic examination                                                                                                       |
|                     | 2. Recognize microbial waste disposal                                                                                                               |
| Content Outline     | • Study and care of microscope and use of oil immersion lens.                                                                                       |
|                     | <ul> <li>Study of morphology of bacteria using stained slides.</li> </ul>                                                                           |
|                     | <ul> <li>Measurement of size of stained bacteria (Micrometry) (use</li> </ul>                                                                       |
|                     | yeast or stained curd whey sample)                                                                                                                  |
|                     | <ul> <li>Handling and disposal of used cultures and materials.</li> </ul>                                                                           |
| Module 4 (Credit 1) | Staining Methods & Instrumentation                                                                                                                  |
| Learning Outcomes   | After learning the module, learners will be able to:                                                                                                |
|                     | 1. Realize different staining technique                                                                                                             |
|                     | 2. Evaluate the Microbiological instrumentation                                                                                                     |
| Content Outline     | Monochrome staining                                                                                                                                 |
|                     | Negative staining                                                                                                                                   |
|                     | <ul> <li>Gram staining of sputum sample</li> </ul>                                                                                                  |
|                     | <ul> <li>Special staining to demonstrate capsule/ stain cell</li> </ul>                                                                             |
|                     | wall/metachromatic granules/lipids/endospore                                                                                                        |
|                     | <ul> <li>Assignment on Survey of disinfectants / antiseptics (hand</li> </ul>                                                                       |
|                     | wash) available in the market, their mode of action and active                                                                                      |
|                     | ingredient used in it.                                                                                                                              |
|                     | <ul> <li>Methods of preparation of glassware for Sterilization (Pipettes,</li> </ul>                                                                |
|                     | Petri Plates, Plastic wares, Flasks, Micropipettes, microtitre                                                                                      |
|                     | plates) & Control of micro organisms using moist heat & dry                                                                                         |
|                     | heat sterilization (Sterilization of Dry powders, Rubber gloves,                                                                                    |
|                     | Bandages, Screw capped tubes, Sterilizable plastic wares)                                                                                           |
|                     |                                                                                                                                                     |
|                     | <ul> <li>Effect of UV Light, Desiccation, surface tension, Osmotic</li> <li>Dressure, having metals (Oligadynamic action) Effect of dues</li> </ul> |
|                     | Pressure, heavy metals (Oligodynamic action) Effect of dyes,                                                                                        |
|                     | phenolic compounds and chemotherapeutic agents (disc                                                                                                |
|                     | inhibition method)                                                                                                                                  |

- 1) Poster presentation on given topic
- 2) Quiz
- 3) Surprise Test
- 4) Seminar presentation

### References

- 1. Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology TMH 5th Edition, 2001.
- 2. Prescott, Hurley, Klein-Microbiology, 9th edition, International edition, McGraw Hill, 2013.
- Michael T. Madigan & J.M.Martin, Brock, Biology of Microorganisms 11th Ed. International edition, Pearson Prentice Hall, 2006.
- 4. Cruikshank, Medical Microbiology, Vol-II, reprint. Publisher, Churchill

Livingstone, 1975.

- 5. Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology, 11th edition McGraw Hill. 2006
- 6. Tortora, Funke and Case, Microbiology-an Introduction, 10th Edition, Benjamin- Cummings Publishing Company, 2009.
- 7. M. Madigan, J. Martinko, J. Parkar, "Brock Biology of microorganisms", 12th ed., Pearson Education International, 2009.
- 8. Tortora G. J. Microbiology: An Introduction, Benjamin Cumming Corp.1st edition, 2008.
- 9. J.C.H. Steele, Clinics in laboratory medicine, Emerging Infections and their causative agents. vol 24, issue 3, September 2004
- 10. Ananthnarayan & Paniker, Textbook of Microbiology, 8th edition, 2009
- 11. Godkar Praful, Medical laboratory technology, 2nd edition, 2006

### 3.4 Minor Stream (2 Credits)

| Course Title      | GENERAL CHEMISTRY (THEORY)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Credits    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Course Out comes  | <ul> <li>After going through the course, learners will be able to</li> <li>1. Draw and explain the structures of various molecules or ions based on the concept of ionic and covalent bonding</li> <li>2. Explain the Rate Law of a Chemical Reaction and Apply the knowledge of principles like Hammonds postulate, Reactivity and Selectivity Microscopic reversibility to predict the nature of reaction and product formation rate</li> <li>3. Differentiate the types of catalytic reactions and explain the role of catalyst</li> <li>4. Classify electrolytes/ elements and elaborate their physiological role.</li> <li>5. Explain use of physiological ions in replacement therapy, acid-base balance and combination therapy.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Learning Outcomes | Introduction to General Chemistry     After learning the module, learners will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Define and identify the structures of various molecules or ions, types of bonds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Content Outline   | <ol> <li>Review of basic bonding concepts: Quantum numbers, atomic orbitals, electron configuration, electronic diagrams, polar covalent bonds, electronegativity group, electron negativities, electrostatic potential surfaces, inductive effects, bond dipoles, molecular dipoles</li> <li>Lewis structures, formal charge.</li> <li>VSEPR, hybridization involving s, p and d orbitals, hybridization effects</li> <li>Kinetics and reaction mechanism</li> <li>Energy surfaces, reaction coordinate diagrams, activated complex/transition state rate and rate constants, reaction order and rate laws</li> <li>Kinetic isotope effects</li> <li>Hammond Postulate, reactivity vs selectivity, Curtin-Hammett Principle, microscopic reversibility, kinetic vs thermodynamic control</li> <li>Catalysis:         <ul> <li>General principles of catalysis, Forms of catalysis – electrophilic catalysis, acid- base catalysis, nucleophilic catalysis, covalent catalysis, correlation of reaction rates with acidity functions.</li> </ul> </li> </ol> |

Module 2 (Credit 1) Intra and Extracellular Electrolytes, Essential and Trace Elements

| Learning Outcomes | After learning the module, learners will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Classify electrolytes/ elements and elaborate their physiological role                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Content Outline   | <ol> <li>Major physiological ions (Role and condition related to<br/>change in concentration of following ions: chloride,<br/>phosphate, bicarbonate, sodium, potassium, calcium,<br/>magnesium)</li> <li>Electrolytes used in replacement therapy: Sodium<br/>replacement (sodium chloride), potassium replacement<br/>(potassium chloride), calcium replacement (calcium<br/>chloride, calcium gluconate)</li> <li>Physiological acid base balance: Acids and Bases: Buffers<br/>(Pharmaceutical and Physiological) Electrolytes used in acid<br/>base therapy (sodium acetate, sodium bicarbonate, sodium<br/>biphosphate, sodium citrate, sodium lactate, ammonium<br/>chloride). Electrolyte combination therapy. Electrolytes used<br/>in replacement therapy: Sodium replacement (sodium<br/>chloride), potassium replacement (potassium chloride),<br/>calcium replacement (calcium chloride, calcium gluconate)</li> <li>Iron and haematinics, Copper, zinc, molybdenum, selenium<br/>and sulphur. Official iodine products (iodine,potassium<br/>iodide, sodium iodide)</li> </ol> |

- 1) Poster presentation on given topic
- 2) Seminar presentation

#### References

- 1. Eric V Ansyln and Dennis A Dougherty, Modern Physical Organic Chemistry, John Wiley.
- 2. Inorganic medicinal and pharmaceutical chemistry, J. H. Block, E. B. Roche, T. O. Soine, and C. O. Wilson. Lea & Febiger, Philadelphia, PA.
- 3. Modern Inorganic Pharmaceutical Chemistry, Clarence A. Discher. Wiley, New York.
- 4. Remington: the science and practice of pharmacy, Beringer, P. Lippincott Williams & Wilkins.
- 5. Inorganic Pharmaceutical Chemistry, Bothara, K. G., Nirali Prakashan.
- Inorganic Pharmaceutical Chemistry,
   A. S. Dhake, H. P. Tipnis, Career Publica tion.

### 3.5 A OEC (2 Credits)

| Course          | Microbes in environment                                                        |
|-----------------|--------------------------------------------------------------------------------|
| Course<br>Title | Microbes in environment                                                        |
| Course          | 2                                                                              |
| Credits         | 2                                                                              |
| Course          | After going through the course, learner will be able to,                       |
| Outcomes        |                                                                                |
|                 | 1. Recognize and analyze the role of microorganism in the ecosystem.           |
|                 | 2. Categorize microorganism into different types and their distinctive         |
|                 | features<br>3. Acquainted common microbial waste and microbial bio remediation |
|                 | 4. Detect various methods for water potability                                 |
| Module 1 (C     | Credit 1) - Microbes in environment I                                          |
| Learning        | After learning the module, learner will be able to,                            |
| Outcomes        |                                                                                |
|                 | 1. Introduce to environmental microbes and their natural habitat               |
|                 | 2. Understand the brief biogeochemical cycling of microbes                     |
|                 | 3. Evaluate and differentiate the microbial interaction between plants         |
|                 | and animal                                                                     |
| Content         | Microorganism and their Habitat                                                |
| Outline         | A. Structure and function of ecosystems                                        |
|                 | B. Terrestrial Environment: Soil profile and soil microflora                   |
|                 | C. Aquatic Environment: Microflora of fresh water and marine habitats          |
|                 | D. Atmosphere: Aeromicroflora and dispersal of microbes                        |
|                 | E. Animal Environment: Microbes in/on human body (Microbiomics) &              |
|                 | animal (ruminants) body.                                                       |
|                 | F. Extreme Habitats: Extremophiles: Microbes thriving at high & low            |
|                 | temperatures, pH, high hydrostatic and osmotic pressures, salinity, &          |
|                 | low nutrient levels.                                                           |
|                 | Biogeochemical Cycling                                                         |
|                 | A. Carbon cycle: Microbial degradation of cellulose, hemicelluloses,           |
|                 | lignin and chitin                                                              |
|                 | B. Nitrogen cycle: Nitrogen fixation, ammonification, nitrification,           |
|                 | denitrification and nitrate reduction                                          |
|                 | C. Phosphorus cycle: Phosphate immobilization and solubilisation               |
|                 | D. Sulphur cycle: Microbes involved in sulphur cycle                           |
|                 | E. Other elemental cycles: Iron and manganese                                  |
|                 | Microbial Interaction                                                          |
|                 | A. Microbe interactions: Mutualism, synergism, commensalism,                   |
|                 | competition, amensalism, parasitism, predation                                 |
|                 | B. Microbe-Plant interaction: Symbiotic and non symbiotic interactions         |
|                 | C. Microbe-animal interaction: Microbes in ruminants, nematophagus             |
| Medula 2 (C     | fungi and symbiotic luminescent bacteria                                       |
| -               | Credit 1) - Microbes in environment II                                         |
| Learning        | After learning the module, learner will be able to,                            |
| Outcomes        | 1. Cummoriza microbial bioromodiation and waste reasons servers                |
|                 | 1. Summarize microbial bioremediation and waste management                     |
|                 | 2. Demonstrate the different methodologies for water potability                |
|                 |                                                                                |

| Content | Water Management                                                                                                                                                                                                                                                                                                                                                           |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outline | A. Solid Waste management: Sources and types of solid waste,<br>Methods of solid waste disposal (composting and sanitary<br>landfill)                                                                                                                                                                                                                                      |
|         | <ul> <li>B. Liquid waste management: Composition and strength of sewage<br/>(BOD and COD), Primary, secondary (oxidation ponds, trickling filter,<br/>activated sludge process and septic tank) and tertiary sewage<br/>treatment</li> <li>Microbial Bioremediation</li> <li>A. Principles and degradation of common pesticides, hydrocarbons (oil<br/>spills).</li> </ul> |
|         | Water Potability                                                                                                                                                                                                                                                                                                                                                           |
|         | A. Treatment and safety of drinking (potable) water                                                                                                                                                                                                                                                                                                                        |
|         | B. Methods to detect potability of water samples: (a) standard qualitative procedure: presumptive test/MPN test, confirmed and completed tests for                                                                                                                                                                                                                         |
|         | faecal coliforms (b) Membrane filter technique and (c) Presence/absence tests                                                                                                                                                                                                                                                                                              |

### 1. Project work:

- Prepare a poster presentation on Microbial Bioremediation.
- Carry out a laboratory test to evaluate water potability.
- Determine COD from lake water to quantify amount of oxidisable pollutants found in water bodies.

### 2. Seminar Presentation:

- Water Management.
- Biogeochemical cycling in Microbes

### **References:**

1. Maier RM, Pepper IL and Gerba CP. (2009). Environmental Microbiology. 2nd edition, Academic Press.

2. Okafor, N (2011). Environmental Microbiology of Aquatic & Waste systems. 1st edition, Springer, New York.

3. Singh A, Kuhad, RC & Ward OP (2009). Advances in Applied Bioremediation. Volume 17, Springer-Verlag, Berlin Hedeilberg Barton LL & Northup DE (2011).

4. Microbial Ecology. 1st edition, Wiley Blackwell, USA.

Campbell RE. (1983). Microbial Ecology. Blackwell Scientific Publication, Oxford, England.

5. Atlas RM and Bartha R. (2000). Microbial Ecology: Fundamentals &

Applications. 4th edition. Benjamin/Cummings Science Publishing, USA.

6. Madigan MT, Martinko JM and Parker J. (2014). Brock Biology of

Microorganisms. 14th edition. Pearson/ Benjamin Cummings.

7. Subba Rao NS. (1999). Soil Microbiology. 4th edition. Oxford & IBH Publishing Co. New Delhi.

8. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's Microbiology.9th edition. McGraw Hill Higher Education.

### 3.5 B. OEC (2 Credits)

| Course                    | Drevention of Food Chailage (Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Title           | Prevention of Food Spoilage (Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Course<br>Credits         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Course                    | After going through the course, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Outcomes                  | <ol> <li>Identify the major causes and types of food spoilage.</li> <li>Explain the principles and methods used to prevent or delay food<br/>spoilage.</li> <li>Analyze the effectiveness of preservation techniques for<br/>different food categories.</li> <li>Apply appropriate food handling, packaging, and storage<br/>techniques to minimize spoilage.</li> <li>Recommend food preservation methods considering safety, shelf<br/>life, and nutritional value.</li> </ol>                                                                                                                                                                                                                           |
| Learning                  | Credit 1) - : Fundamentals of Food Spoilage and Microbial Activity After learning the module, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Outcomes                  | <ul> <li>4. Define food spoilage and categorize its types and identify<br/>microbial, chemical, enzymatic, and physical causes of<br/>spoilage.</li> <li>5. Explain the role of bacteria, yeasts, and molds in food spoilage and<br/>evaluate<br/>the factors influencing spoilage, including temperature, pH, moisture, and<br/>oxygen.</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
| Content                   | 1. Introduction to Food Spoilage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Outline                   | <ul> <li>Definition and importance</li> <li>Signs and consequences of spoilage</li> <li>Types and Causes of Spoilage <ul> <li>Microbial (bacterial, yeast, fungal)</li> <li>Chemical (oxidation, rancidity)</li> <li>Enzymatic and physical changes</li> </ul> </li> <li>Spoilage in Different Food Types <ul> <li>Perishables (meat, milk, fruits, vegetables)</li> <li>Semi-perishables and non-perishables</li> </ul> </li> <li>Factors Influencing Spoilage <ul> <li>Environmental (humidity, temperature, light)</li> <li>Intrinsic (water activity, pH, nutrients)</li> </ul> </li> <li>Spoilage Indicators and Testing Methods <ul> <li>Sensory and microbiological analysis</li> </ul> </li> </ul> |
| Module 2 (C<br>Strategies | Credit 1)-: Food Preservation Techniques and Spoilage Prevention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Learning<br>Outcomes      | After learning the module, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           | <ol> <li>Describe and compare the traditional and modern preservation<br/>techniques.</li> <li>Analyze the impact of preservation on food quality and safety and to<br/>design storage and handling plans to reduce spoilage risks.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Content<br>Outline | <ul> <li>1. Overview of Food Preservation</li> <li>Objectives and scope</li> <li>Role in food safety and security</li> </ul> |
|--------------------|------------------------------------------------------------------------------------------------------------------------------|
|                    | 2. Physical Methods                                                                                                          |
|                    | Refrigeration and freezing                                                                                                   |
|                    | Dehydration and drying                                                                                                       |
|                    | <ul> <li>Heat treatment (pasteurization, sterilization, canning)</li> <li>3. Chemical Methods</li> </ul>                     |
|                    | <ul> <li>Preservatives (organic acids, nitrites, antioxidants)</li> <li>Food additives and labeling regulations</li> </ul>   |
|                    |                                                                                                                              |
|                    | 4. Biological and Emerging Techniques                                                                                        |

Fermentation
 Use of bacteriocins and probiotics
 High-pressure processing, irradiation
 **Packaging and Storage Strategies** Modified Atmosphere Packaging (MAP)
 Vacuum sealing
 Cold chain logistics
 **Hygiene and Sanitation** Good Manufacturing Practices (GMP)
 Hazard Analysis and Critical Control Points (HACCP)

#### Assignments/Activities towards Comprehensive Continuous Evaluation (CCE):

- Case studies on spoilage incidents (e.g., canned food recall)
- Lab demonstrations on microbial growth in foods
- Field visits to food processing or storage units
- Small group projects on preservation strategies for local foods

#### **References:**

- Potter, N. N., & Hotchkiss, J. H. Food Science
- Jay, J. M. Modern Food Microbiology
- Fellows, P. J. Food Processing Technology: Principles and Practice

### 3.7 Field Project (FP) (2 Credits)

### SOP for evaluation of FP:

| 1. Training     | Evaluation criterion                                                                 | Total Marks 20 |
|-----------------|--------------------------------------------------------------------------------------|----------------|
| Office          | 1. Log Book (Daily documenting the field                                             | 5 Marks        |
| r Assessment    | work activities)                                                                     |                |
|                 | 2. Initiative                                                                        | 5 Marks        |
|                 | 3. Trainee's Commitment towards work                                                 | 5 Marks        |
|                 | 4. Viva-voce                                                                         | 5 Marks        |
| 2. Attendance   | Punctuality                                                                          | 10 Marks       |
| 3. Presentation |                                                                                      | 20 Marks       |
| 0               | 1. Quality of content [10m]                                                          | 10 Marks       |
| n the field     | a. Accuracy and relevance of the                                                     | 2 Marks        |
| project         | information                                                                          |                |
|                 | b. Depth of Analysis: Does it go                                                     | 2 Marks        |
|                 | beyond surface-level facts and                                                       |                |
|                 | show                                                                                 |                |
|                 | understanding?                                                                       |                |
|                 | c. Structure: Is the information logically                                           | 2 Marks        |
|                 | organized? (eg. Intro, body, conclusion)                                             |                |
|                 | d. Delivery: Voice and clarity, speed of                                             | 2 Marks        |
|                 | delivery                                                                             | - · · · ·      |
|                 | e. Confidence: maintaining eye contact,                                              | 2 Marks        |
|                 | body language and<br>audience engagement                                             |                |
|                 | 2. Visual Aids                                                                       | 5 Marks        |
|                 | a. Quality of Slides: Are they                                                       | 2 Marks        |
|                 | neat,                                                                                | 2 1 10113      |
|                 | readable, and visually engaging?                                                     |                |
|                 | b. Use of Media: Are videos, images, or                                              | 2 Marks        |
|                 | charts used effectively?                                                             |                |
|                 | c. Relevance: Do visuals                                                             | 1 Marks        |
|                 | enhance understanding                                                                |                |
|                 | or distract from the topic?                                                          |                |
|                 | 3. Time Management                                                                   | 3 Marks        |
|                 | <b>a.</b> Presentation should be in a required time                                  | 2 Marks        |
|                 | frame                                                                                | 4 M. L.        |
|                 | <b>b.</b> All the section (introduction                                              | 1 Marks        |
|                 | ,body,<br>conclusion) should be given equal time                                     |                |
|                 | conclusion) should be given equal time<br>4. Q & A Handling: Are they able to answer | 2 Marks        |
|                 | questions clearly and correctly                                                      |                |
| <u> </u>        |                                                                                      |                |

### SEMESTER IV

### 4.1 Major Core (4 Credits)

| Course Title       | Bacteriology (Theory + Practical)                                                                                                                                                     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Credit             | 4                                                                                                                                                                                     |
| Course             | After going through the course, learners will be able to -                                                                                                                            |
| Outcomes           | 1.Understand the basic principles of bacterial structure and                                                                                                                          |
|                    | functions                                                                                                                                                                             |
|                    | 2.Describe the different types of bacterial metabolism                                                                                                                                |
|                    | 3. Identify and classify bacteria by using various techniques                                                                                                                         |
|                    | 4. Visualize role of bacteria in human health and disease                                                                                                                             |
|                    | 5.Represent to perform variety of laboratory techniques                                                                                                                               |
| Module-1 (Credit 1 | ):Cell Organization                                                                                                                                                                   |
| Learning           | After learning the module, learners will be able to -                                                                                                                                 |
| Outcomes           | 1.Understand the structures and purposes of basic                                                                                                                                     |
|                    | components of                                                                                                                                                                         |
|                    | prokaryotic and eukaryotic cells                                                                                                                                                      |
|                    | 2.Describe the major components of cells                                                                                                                                              |
|                    | 3. Identify the functions of various cytoplasmic organelles                                                                                                                           |
| Content Outline    | <ul> <li>Cell size, shape and arrangement, glycocalyx, capsule, flagella, endoflagella, fimbriae and pili.</li> <li>Cell-wall: Composition and detailed structure of Gram-</li> </ul> |
|                    | positive and Gram-negative cell walls                                                                                                                                                 |
|                    | • Archaebacterial cell wall, Gram and acid fast staining                                                                                                                              |
|                    | mechanisms, lipopolysaccharide (LPS), sphaeroplasts,                                                                                                                                  |
|                    | protoplasts, and L-forms. Effect of antibiotics and enzymes on                                                                                                                        |
|                    | the cell wall.                                                                                                                                                                        |
|                    | <ul> <li>Cell Membrane: Structure, function and chemical</li> </ul>                                                                                                                   |
|                    | composition of bacterial and archaeal cell membranes.                                                                                                                                 |
|                    | • Cytoplasm: Ribosomes, mesosomes, inclusion bodies,                                                                                                                                  |
|                    | <ul> <li>nucleoid, chromosome and plasmids</li> <li>Endospore: Structure, formation, stages of sporulation.</li> </ul>                                                                |
| Module-2 (Credit 1 | ): Bacteriological Techniques & Microscopy                                                                                                                                            |
| -                  |                                                                                                                                                                                       |
| Learning           | After learning the module, learners will be able to -                                                                                                                                 |
| Outcomes           | 1.Understand the different types of media, their components and                                                                                                                       |
|                    | preparation method                                                                                                                                                                    |
|                    | 2.Interpret various biochemical tests to identify bacteria based on their                                                                                                             |
|                    | metabolic activities and enzymatic properties                                                                                                                                         |
|                    | 3.Identify different bacterial shapes and arrangements                                                                                                                                |
| Content Outline    | • Pure culture isolation: Streaking, serial dilution and plating                                                                                                                      |
|                    | methods; cultivation, maintenance and preservation/stocking                                                                                                                           |
|                    | of pure cultures; cultivation of anaerobic bacteria, and                                                                                                                              |
|                    | <ul> <li>accessing non- culturable bacteria.</li> <li>Bright Field Microscope, Dark Field Microscope, Phase</li> </ul>                                                                |
|                    | Contrast Microscope, Fluoresence Microscope, Confocal                                                                                                                                 |
|                    | microscopy, Scanning and Transmission Electron Microscope                                                                                                                             |
| Module-3 (Credit 1 | ): Growth, Nutrition And Reproduction In Bacteria                                                                                                                                     |
| Learning           | After learning the module, learners will be able to -                                                                                                                                 |
|                    | 1.Describe the phase of bacterial growth in a batch culture                                                                                                                           |
| L                  |                                                                                                                                                                                       |

| Outcomes | 2.Calculate bacterial generation time and specific growth including |
|----------|---------------------------------------------------------------------|
|          | temperature, pH, oxygen availability and nutrient availability      |
|          | 3.Differentiate between different types of bacterial culture media  |
|          | and                                                                 |
|          | their uses                                                          |

| Content Outline    | Experiments on –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | <ul> <li>Nutritional requirements in bacteria and nutritional</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | categories;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | <ul> <li>Culture media: components of media, natural and synthetic media, chemically defined media, complex media, selective, differential, indicator, enriched and enrichment media</li> <li>Physical methods of microbial control: heat, low temperature, high pressure, filtration, desiccation, Osmotic pressure, radiation</li> <li>Chemical methods of microbial control: disinfectants, types and mode of action</li> <li>Asexual methods of reproduction, logarithmic representation of bacterial populations, phases of growth, calculation of generation time and specific growth rate</li> </ul> |
| Module-4(Credit 1) | Bacterial Systematics And Important Archaeal and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Eubacterial        | ibuctorial systematics And important Architear and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Groups             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Learning           | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Outcomes           | 1.Distinct bacteria in terms of their genetic and biochemical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | 2.Explain principles of classification, systematics and taxonomy,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | concept of species, taxa, strain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | 3.Demonstrate non proteobacteria of general characteristics with suitable examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| Content Outline | Experiments on -                                                                            |
|-----------------|---------------------------------------------------------------------------------------------|
|                 | • Aim and principles of classification, systematics and                                     |
|                 | taxonomy, concept of species, taxa, strain                                                  |
|                 | <ul> <li>Conventional, molecular and recent approaches to polyphasic</li> </ul>             |
|                 | bacterial taxonomy, Evolutionary chronometers, rRNA                                         |
|                 | oligonucleotide sequencing, signature sequences, and protein                                |
|                 | sequences.                                                                                  |
|                 | <ul> <li>Differences between eubacteria and archaebacteria</li> </ul>                       |
|                 | • Archaebacteria: General characteristics, phylogenetic                                     |
|                 | overview, genera belonging to Nanoarchaeota                                                 |
|                 | ( <i>Nanoarchaeum</i> ), Crenarchaeota ( <i>Sulfolobus</i> ,                                |
|                 | Thermoproteus) and Euryarchaeota [Methanogens]                                              |
|                 | ( <i>Methanobacterium</i> , <i>Methanocaldococcus</i> ), thermophiles                       |
|                 | ( <i>Thermococcus</i> , <i>Pyrococcus</i> , <i>Thermoplasma</i> ), and Halophiles           |
|                 | (Halobacterium, Halococcus)]                                                                |
|                 | • <b>Eubacteria:</b> Morphology, metabolism, ecological significance                        |
|                 | and economic importance of following groups:                                                |
|                 | • Gram Negative:                                                                            |
|                 | <ul> <li>Non proteobacteria: General characteristics with suitable</li> </ul>               |
|                 | examples                                                                                    |
|                 | • Alpha proteobacteria: General characteristics with suitable                               |
|                 | examples                                                                                    |
|                 | <ul> <li>Beta proteobacteria: General characteristics with suitable<br/>examples</li> </ul> |
|                 | • Gamma proteobacteria: General characteristics with suitable                               |
|                 | examples Delta proteobacteria: General characteristics with                                 |
|                 | suitable examples                                                                           |
|                 | • Epsilon proteobacteria: General characteristics with suitable                             |
|                 | examples                                                                                    |
|                 | <ul> <li>Zeta proteobacteria: General characteristics with suitable</li> </ul>              |
|                 | examples                                                                                    |
|                 | • Gram Positive:                                                                            |
|                 | • Low G+ C (Firmicutes): General characteristics with                                       |
|                 | suitable examples                                                                           |
|                 | • High G+C (Actinobacteria): General characteristics with                                   |
|                 | suitable examples                                                                           |
|                 | • Cyanobacteria: An Introduction                                                            |

1) Prepare laboratory reports on experiments of bacteriology

- 2) Research paper on the topic of bacteriology
- 3) Quizzes based on multiple choice questions, essay
- 4) Group discussion on bacteriological diseases

#### **References:**

- 1. Atlas RM. (1997). Principles of Microbiology. 2<sup>nd</sup> edition. WM.T.Brown Publishers. 2. Black JG. (2008). Microbiology: Principles and Explorations. 7<sup>th</sup> edition. Prentice
- 2. Black JG. (2008). Microbiology: Principles and Explorations. 7<sup>th</sup> edition. Prentice Hall
- 3. Madigan MT, and Martinko JM. (2014). Brock Biology of Micro-organisms.

14<sup>th</sup> edition. Parker J. Prentice Hall International, Inc.

4. Pelczar Jr MJ, Chan ECS, and Krieg NR. (2004). Microbiology.  $5^{th}$  edition Tata McGraw Hill.

5. Srivastava S and Srivastava PS. (2003). Understanding Bacteria.

Kluwer Academic Publishers, Dordrecht

6. Stanier RY, Ingraham JL, Wheelis ML and Painter PR. (2005). General Microbiology. 5<sup>th</sup> edition McMillan.

7. Tortora GJ, Funke BR, and Case CL. (2008). Microbiology: An

Introduction. 9<sup>th</sup> edition Pearson Education.

8. Willey JM, Sherwood LM, and Woolverton CJ. (2013). Prescott's

Microbiology. 9<sup>th</sup> edition. McGraw Hill Higher Education.

9. Cappucino J and Sherman N. (2010). Microbiology: A Laboratory Manual.

9<sup>th</sup> edition. Pearson Education Limited

### 4.2 Major Core (4 Credits)

| Course Title       | Biochemistry(Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Credit             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Course             | After going through the course, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                            |
| Outcomes           | 1. Recognize the fundamental biochemical principles                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | 2.Apply biochemical concepts to biological systems                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | 3.Evaluate experimental results, draw conclusions                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module-1 (Credit 1 | ):Bioenergetics                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Learning           | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                 |
| Outcomes           | 1. Know the fundamental principles governing energy transfer and                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | transformations                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | 2.Explore the intricate network of biochemical reactions                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 3. Analyze standard free energy change and equilibrium constant                                                                                                                                                                                                                                                                                                                                                                                       |
| Content Outline    | <ul> <li>First and second laws of Thermodynamics. Definitions of<br/>Gibb's Free Energy, enthalpy, and Entropy and<br/>mathematical relationship among them, Standard free<br/>energy change and equilibrium constant</li> <li>Coupled reactions and additive nature of standard free<br/>energy change, Energy rich compounds:<br/>Phosphoenolpyruvate, 1,3-<br/>Bisphosphon glycerate, Thioesters, ATP</li> <li>Carbohydrates And Lipids</li> </ul> |
| •<br>•             |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Learning           | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                 |
| Outcomes           | 1. Understand the basic structure and properties of carbohydrate                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | <ul><li>2.Explain the functions of carbohydrate in body</li><li>3.Identify the different types of lipids and role of lipids in health and diseases</li></ul>                                                                                                                                                                                                                                                                                          |

| Content Outline | • Families of monosaccharides: aldoses and ketoses,                           |
|-----------------|-------------------------------------------------------------------------------|
|                 | trioses, tetroses, pentoses, and hexoses.                                     |
|                 | • Stereo isomerism of monosaccharides, epimers,                               |
|                 | Mutarotation and anomers of glucose. Furanose and                             |
|                 | pyranose forms of glucose and fructose, Haworth projection                    |
|                 | formulae for glucose; chair and boat forms of glucose,                        |
|                 | Sugar derivatives, glucosamine, galactosamine, muramic                        |
|                 | acid, N- acetyl neuraminic acid                                               |
|                 | • Disaccharides; concept of reducing and non-reducing                         |
|                 | sugars, occurrence and Haworth projections of maltose,                        |
|                 | lactose, and sucrose, Polysaccharides, storage                                |
|                 | polysaccharides, starch and glycogen. Structural                              |
|                 | Polysaccharides, cellulose, peptidoglycan and chitin                          |
|                 | <ul> <li>Definition and major classes of storage and structural</li> </ul>    |
|                 | lipids. Storage lipids. Fatty acids structure and                             |
|                 | functions.                                                                    |
|                 | <ul> <li>Essential fatty acids. Triacylglycerols structure,</li> </ul>        |
|                 | functions and properties. Saponification                                      |
|                 | <ul> <li>Structural lipids. Phosphoglycerides: Building blocks,</li> </ul>    |
|                 | General structure, functions and properties.                                  |
|                 | <ul> <li>Structure of phosphatidylethanolamine and</li> </ul>                 |
|                 | phosphatidylcholine, Sphingolipids: building blocks,                          |
|                 | structure of sphingosine, ceramide. Special mention of                        |
|                 | sphingomyelins, cerebrosides and gangliosides                                 |
|                 | <ul> <li>Lipid functions: cell signals, cofactors, prostaglandins,</li> </ul> |
|                 | Introduction                                                                  |
|                 | Incoduction                                                                   |

|                  | of lipid micelles, monolayers, bilayers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Module-3 (Credit | 1):Protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Learning         | After learning the module, learners will be able to -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Outcomes         | 1.Describe the different levels of protein structures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                  | 2.Understand the concept of protein quality and essential amino acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                  | 3.Demonstrate the structure of oligopeptides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Content Outline  | <ul> <li>Functions of proteins, Primary structures of proteins:<br/>Amino acids, the building blocks of proteins.</li> <li>General formula of amino acid and concept of zwitterion.<br/>Titration curve of amino acid and its Significance,<br/>Classification, biochemical structure and notation of<br/>standard protein amino acids</li> <li>Ninhydrin reaction, Natural modifications of amino acids in<br/>proteins hydrolysine, cystine and hydroxyproline, Non<br/>protein amino acids: Gramicidin, beta-alanine, D-alanine<br/>and D- glutamic acid</li> <li>Oligopeptides: Structure and functions of naturally<br/>occurring glutathione and insulin and synthetic<br/>aspartame, Secondary structure of proteins: Peptide<br/>unit and its salient features. The alpha helix, the beta</li> </ul> |  |  |

|                   | <ul> <li>and quaternary structures of proteins.</li> <li>Forces holding the polypeptide together. Human haemoglobin structure, Quaternary structures of proteins</li> </ul> |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Modulo-4(Crodit ' | 1):Enzymos And Vitamins                                                                                                                                                     |  |  |
| -                 | Module-4(Credit 1):Enzymes And Vitamins                                                                                                                                     |  |  |
| Learning          | After learning the module, learners will be able to -                                                                                                                       |  |  |
| Outcomes          | 1.Understand the basic principles, functions, structure and                                                                                                                 |  |  |
|                   | classification                                                                                                                                                              |  |  |
|                   | of enzymes<br>2.Explain the role of enzymes various metabolic pathway                                                                                                       |  |  |
|                   |                                                                                                                                                                             |  |  |
|                   | 3.Describe the classification and characteristics with suitable examples                                                                                                    |  |  |
|                   | examples,<br>sources and importance of vitamins                                                                                                                             |  |  |
| Content Outline   | <ul> <li>Structure of enzyme: Apoenzyme and cofactors, prosthetic</li> </ul>                                                                                                |  |  |
| content outline   | group- TPP, coenzyme NAD, metal cofactors                                                                                                                                   |  |  |
|                   | <ul> <li>Classification of enzymes, Mechanism of action of enzymes:</li> </ul>                                                                                              |  |  |
|                   | active site, transition state complex and activation energy.                                                                                                                |  |  |
|                   | Lock and key hypothesis, and Induced Fit hypothesis.                                                                                                                        |  |  |
|                   | <ul> <li>Significance of hyperbolic, double reciprocal plots of</li> </ul>                                                                                                  |  |  |
|                   | enzyme activity, Km, and allosteric mechanism                                                                                                                               |  |  |
|                   | <ul> <li>Definitions of terms – enzyme unit, specific activity and</li> </ul>                                                                                               |  |  |
|                   | turnover number, Multienzyme complex : pyruvate                                                                                                                             |  |  |
|                   | dehydrogenase; isozyme: lactate dehydrogenase                                                                                                                               |  |  |
|                   | <ul> <li>Effect of pH and temperature on enzyme activity. Enzyme</li> </ul>                                                                                                 |  |  |
|                   | inhibition: competitive- sulfa drugs; non-competitive-                                                                                                                      |  |  |
|                   | heavy metal salts                                                                                                                                                           |  |  |
|                   | <ul> <li>Classification and characteristics with suitable examples,</li> </ul>                                                                                              |  |  |
|                   | sources                                                                                                                                                                     |  |  |
|                   | and importance of vitamins                                                                                                                                                  |  |  |
|                   |                                                                                                                                                                             |  |  |

1) Students create a visual representation linking concepts of carbohydrate metabolism/enzyme kinetics.

2) Label and explain the components and processes depicted in diagram of the structure of protein

- 3) Debates different viewpoints on a controversial topic in biochemistry
- 4) Online quizzes, discussions, and collaborative projects

#### **References:**

- 1. Campbell, MK (2012) Biochemistry, 7th edition., Published by Cengage Learning
- 2. Campbell, PN and Smith AD (2011) Biochemistry

Illustrated, 4 th ed., Published by Churchill Livingstone

3. Tymoczko JL, Berg JM and Stryer L (2012) Biochemistry: A short course, 2nd ed., W.H.Freeman

4. Berg JM, Tymoczko JL and Stryer L (2011) Biochemistry, W.H.Freeman and Company

5. Nelson DL and Cox MM (2008) Lehninger Principles of Biochemistry, 5th Edition., W.H. Freeman and Company,

6. Willey MJ, Sherwood, LM & Woolverton C J (2013) Prescott, Harley and Klein's Microbiology by. 9th Ed., McGrawHill

7. Voet, D. and Voet J.G (2004) Biochemistry 3rd edition, John Wiley and Sons

### 4.3 Major Core (4 Credits)

| Course Title       | APPLIED MICROBIOLOGY II (THEORY + PRACTICAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Course Credits     | 2+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Course Out comes   | After going through the course, learners will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                    | <ol> <li>To study various factors affecting infections caused<br/>by microorganisms.</li> <li>To outline various mechanisms of microbial drug resistance.</li> <li>To enlist the pathways of host defense against<br/>microbial infections.</li> <li>To understand the working of different types<br/>microbiological</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Medule 1 (Credit1) | instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                    | Microbes and Human health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Learning Outcomes  | After learning the module, learners will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                    | <ol> <li>Understand difference between infection and disease</li> <li>Study various factors affecting infections caused<br/>by microorganisms.</li> <li>Enlist the pathways of host defence against microbial<br/>infections.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Content Outline    | ontent Outline Microbes and Human health                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                    | <ul> <li>Difference between infection &amp; disease - Important terminology: Primary infection, secondary infection. Contagious infection, occupational disorder, clinical infection, subclinical infection, Zoonoses, genetic disorder, vector borne infection.</li> <li>Factors affecting infection -         <ul> <li>a) Microbial factors: adherence, invasion, role of virulence factors in invasion, colonization &amp; its effects.</li> <li>b) Host factors: natural resistance, species resistance, racial resistance.</li> </ul> </li> <li>Individual resistance: Factors influencing individual resistance: Age, nutrition, personal hygiene, stress, hormones, Addiction to drugs/ alcohol. Interaction between Microbes &amp; host is dynamic.</li> <li>Host defense against infection: Overview         <ul> <li>a) First line of Defense: for skin, respiratory tract, eyes.</li> <li>b) Second line of infection: Biological barriers: Phagocytosis, Inflammation</li> <li>c) Third line of infection: Brief introduction to antibody mediated &amp; cell mediated immunity</li> </ul></li></ul> |  |  |
| Module 2 (Credit1) | Module 2 (Credit1) Advanced Microscopy & Instrumentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Learning Outcomes  | After learning the module, learners will be able to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                    | □□ Understand the working of different types<br>microbiological<br>instruments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |

| Content Outline | Advanced Microscopy & Instrumentation                             |
|-----------------|-------------------------------------------------------------------|
|                 | <ul> <li>Electron Microscope: TEM, SEM,</li> </ul>                |
|                 | <ul> <li>Contrast enhancement for electron microscope</li> </ul>  |
|                 | <ul> <li>Fluorescent Microscope, Confocal Microscope</li> </ul>   |
|                 | <ul> <li>pH meter, pH meter Validation and calibration</li> </ul> |

|                                                                         | Colorimeter                                                                     |  |  |  |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
|                                                                         | <ul> <li>Validation and calibration of Auto clave &amp; Hot air Oven</li> </ul> |  |  |  |
|                                                                         | <ul> <li>Concepts: Laminar air flow systems, Biosafety cabinets, Wa</li> </ul>  |  |  |  |
|                                                                         | in Incubators, Industrial autoclaves, Cold Room                                 |  |  |  |
| Module 3 (Credit1)                                                      | Study of virulence factors                                                      |  |  |  |
| Learning Outcomes After learning the module, learner will be able to,   |                                                                                 |  |  |  |
|                                                                         | 1. Determine virulence factor for enzyme                                        |  |  |  |
|                                                                         | 2. Calibrate different biochemical solutions                                    |  |  |  |
| <b>Content Outline</b> • Study of virulence factors – Enzyme Coagulase. |                                                                                 |  |  |  |
|                                                                         | <ul> <li>Study of virulence factors – Enzyme Hemolysin.</li> </ul>              |  |  |  |
|                                                                         | <ul> <li>Study of virulence factors – Enzyme Lecithinase.</li> </ul>            |  |  |  |
|                                                                         | • Use of standard buffers for calibration and determination of pH               |  |  |  |
|                                                                         | of a given solution.                                                            |  |  |  |
| Module 4 (Credit1) I                                                    | nstrumentation in microbiology                                                  |  |  |  |
| Learning Outcomes                                                       | After learning the module, learner will be able to,                             |  |  |  |
|                                                                         | 1. Evaluate the beer Lambert's law                                              |  |  |  |
|                                                                         | 2. Determine efficiency of Microbiological Instrument                           |  |  |  |
|                                                                         | 3. Scope and relevance of microbiology lab in research institute                |  |  |  |
| Content Outline                                                         | • Determination of $\lambda \max \&$ Verification of Beer Lambert's law.        |  |  |  |
|                                                                         | <ul> <li>Determination &amp; efficiency of Autoclave, Hot air oven,</li> </ul>  |  |  |  |
|                                                                         | Laminar Air Flow.                                                               |  |  |  |
|                                                                         | <ul> <li>Writing of SOP's for Instruments.</li> </ul>                           |  |  |  |
|                                                                         | <ul> <li>Visit to a Microbiology laboratory in a research Institute.</li> </ul> |  |  |  |

- 4.3.1 Diagrammatic Representation on module 2 topics
- 4.3.2 Quiz on module 3 topics
- 4.3.3 Surprise Test
- 4.3.4 Seminar presentation on module 1 topics

### References

- 1. Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology TMH 5th Edition, 1998
- 2. Prescott, Hurley, Klein-Microbiology,9<sup>th</sup> Edition, International edition, McGraw Hill, 2013.
- Michael T. Madigan & J. M. Martin, Brock, Biology of Microorganisms 11th Ed. International edition, Pearson Prentice Hall, 2006
- 4. Cruikshank, Medical Microbiology, Vol-II, reprint. Publisher, Churchill Livingstone, 1975.
- 5. Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology,

11th edition McGraw Hill. 2006.

- 6. Tortora, Funke and Case, Microbiology an Introduction, 10th Edition, Benjamin- Cummings Publishing Company, 2009.
- 7. M. Madigan, J. Martinko, J. Parkar, "Brock Biology of microorganisms", 12th ed., Pearson Education International, 2009
- 8. Tortora G. J. Microbiology: An Introduction, Benjamin Cumming Corp.1<sup>st</sup> edition, 2008.
- 9. J.C.H. *Steele,* Clinics in laboratory medicine, Emerging Infections and their causative agents. vol 24, issue 3, September 2004
- 10. Ananthnarayan & Paniker, Textbook of Microbiology, 8th edition 2009
- 11. Godkar Praful, Medical laboratory technology, 2nd edition. 2006

### 4.4 A. OEC (2 Credits)

| Course      | Health and Hygiene in Daily Life                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Title       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Course      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Credits     |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Course      | After going through the course, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Outcomes    | 1. Evaluate the role of normal microbial flora in human body.                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|             | 2. Acquainted clinical specimen collection, transportation and lab                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|             | diagnosis.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|             | 3. Categorize different bacterial, viral, fungal and protozoal                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|             | diseases depending upon its causative agents and clinical                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | features.                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | 4. Demonstrate variety of Antimicrobial agents.                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | 5. Identify the scope and relevance of medical microbiology.                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| -           | Credit 1) – Microbes affecting Health                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Learning    | After learning the module, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Outcomes    | 1. Introduce to normal microbial flora and its medical importance                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | 2. In depth understand the host pathogen interaction                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|             | 3. Evaluate different methods for clinical specimen collection,                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | transportation and lab diagnosis.                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Content     | Introduction to normal microbial flora and host                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Outline     | pathogen interaction:                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|             | A. Normal microflora of the human body: Importance of normal                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|             | microflora, normal microflora of skin, throat, gastrointestinal tract,                                                                                                                                                                                                                                                                                                                                                             |  |  |
|             | urogenital tract.                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | Host pathogen interaction:     A Definitions Infection Investion Dathogon Dathogonisity                                                                                                                                                                                                                                                                                                                                            |  |  |
|             | A. Definitions - Infection, Invasion, Pathogen, Pathogenicity,<br>Virulence, Toxigenicity.                                                                                                                                                                                                                                                                                                                                         |  |  |
|             | B. Carriers and their types, Opportunistic infections, Nosocomial                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|             | infections and Transmission of infection.                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | <ul> <li>Clinical specimen collection, transportation and lab diagnosis:</li> </ul>                                                                                                                                                                                                                                                                                                                                                |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|             | A. Collection, transport and culturing of clinical samples.                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|             | B. Identification of microbe depending upon its cultural and                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Module 2 (C | B. Identification of microbe depending upon its cultural and biochemical characteristics.                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | B. Identification of microbe depending upon its cultural and biochemical characteristics.<br>Credit 1) - Microbes causing diseases                                                                                                                                                                                                                                                                                                 |  |  |
| Learning    | B. Identification of microbe depending upon its cultural and biochemical characteristics.                                                                                                                                                                                                                                                                                                                                          |  |  |
|             | <ul> <li>B. Identification of microbe depending upon its cultural and biochemical characteristics.</li> <li>Credit 1) - Microbes causing diseases</li> <li>After learning the module, learner will be able to,</li> </ul>                                                                                                                                                                                                          |  |  |
| Learning    | <ul> <li>B. Identification of microbe depending upon its cultural and biochemical characteristics.</li> <li>Credit 1) - Microbes causing diseases</li> <li>After learning the module, learner will be able to,</li> <li>1. Differentiation various diseases depending upon its causative agents.</li> </ul>                                                                                                                        |  |  |
| Learning    | <ul> <li>B. Identification of microbe depending upon its cultural and biochemical characteristics.</li> <li>Credit 1) - Microbes causing diseases</li> <li>After learning the module, learner will be able to,</li> <li>1. Differentiation various diseases depending upon its causative agents.</li> <li>2. In depth understand the bacterial, viral, protozoal and fungal</li> </ul>                                             |  |  |
| Learning    | <ul> <li>B. Identification of microbe depending upon its cultural and biochemical characteristics.</li> <li>Credit 1) - Microbes causing diseases</li> <li>After learning the module, learner will be able to,</li> <li>1. Differentiation various diseases depending upon its causative agents.</li> <li>2. In depth understand the bacterial, viral, protozoal and fungal pathogenesis and their laboratory diagnosis</li> </ul> |  |  |
| Learning    | <ul> <li>B. Identification of microbe depending upon its cultural and biochemical characteristics.</li> <li>Credit 1) - Microbes causing diseases</li> <li>After learning the module, learner will be able to,</li> <li>1. Differentiation various diseases depending upon its causative agents.</li> <li>2. In depth understand the bacterial, viral, protozoal and fungal</li> </ul>                                             |  |  |

| Content | Bacterial Diseases:                                                  |
|---------|----------------------------------------------------------------------|
| Outline | List of diseases of various organ systems and their causative agents |
|         | • Viral Diseases:                                                    |
|         | List of diseases of various organ systems and their causative agents |
|         | Protozoal Disease:                                                   |
|         | List of diseases of various organ systems and their causative agents |
|         | • Fungal Disease:                                                    |
|         | A. Different types of mycoses                                        |

| <ul> <li>B. List of diseases of various organ systems and their causative agents</li> <li>Antimicrobial agents: General characteristics and mode of action</li> </ul>                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>A. Antibacterial agents: Five modes of action with one example each:<br/>Inhibitor of nucleic acid synthesis, Inhibitor of cell wall synthesis,<br/>Inhibitor of cell membrane function, Inhibitor of protein synthesis,<br/>Inhibitor of metabolism.</li> <li>B. Antifungal agents: Mechanism of action of Amphotericin B, Griseofulvin.</li> <li>C. Antiviral agents: Mechanism of action of Amantadine,<br/>Acyclovir, Azidothymidine.</li> </ul> |

- 1. Seminar Presentation:
- Host and Pathogen interaction
- Viral and fungal Diseases.
- 2. Quizzes on Antimicrobial agent: antibacterial, anti-fungal and antiviral agents.
- 3. Poster presentation on laboratory diagnosis of various bacteriological clinical specimen.
- 4. Demonstrate antibacterial sensitivity by kirby-Bauer method.

### **Reference:**

1. Ananthanarayan R. and Paniker C.K.J. (2009) Textbook of Microbiology. 8th edition, University Press Publication

2. Brooks G.F., Carroll K.C., Butel J.S., Morse S.A. and Mietzner, T.A. (2013) Jawetz, Melnick and Adelberg's Medical Microbiology. 26th edition. McGraw Hill Publication

3. Goering R., Dockrell H., Zuckerman M. and Wakelin D. (2007) Mims' Medical Microbiology. 4th edition. Elsevier

4. Willey JM, Sherwood LM, and Woolverton CJ. (2013) Prescott, Harley and Klein's Microbiology. 9th edition. McGraw Hill Higher Education

### 4.4 B. OEC (2 Credits)

| Course<br>Title      | Home Composting: Sustainable Waste Management at Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course<br>Credits    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Course<br>Outcomes   | After going through the course, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | <ol> <li>Realise the environmental and economic benefits of home composting.</li> <li>Identify compostable materials and the science behind composting.</li> <li>Set up and manage a home composting system effectively.</li> <li>Troubleshoot common composting issues.</li> <li>Utilize compost in home gardens or plant care effectively.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Managemen            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Learning<br>Outcomes | After learning the module, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | <ol> <li>Identify types of organic waste suitable for composting.</li> <li>Describe the biological process and key components (carbon, nitrogen, oxygen, moisture) involved and distinguish between different composition methods.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | composting methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Content<br>Outline   | <ul> <li>Introduction to Composting         <ul> <li>What is composting?</li> <li>Environmental and economic benefits</li> <li>Composting vs landfill disposal</li> </ul> </li> <li>Organic Waste: What Can Be Composted         <ul> <li>Green (nitrogen-rich) vs Brown (carbon-rich) materials</li> <li>What not to compost (meat, dairy, diseased plants)</li> </ul> </li> <li>The Science of Composting         <ul> <li>Role of microbes, fungi, and decomposers</li> <li>The composting cycle: aerobic breakdown</li> <li>Importance of C:N ratio, temperature, moisture</li> </ul> </li> <li>Types of Composting         <ul> <li>Backyard composting</li> <li>Vermicomposting (using worms)</li> <li>Trench and pit composting</li> <li>Bokashi (fermentation-based)</li> </ul> </li> <li>Setting Sustainability Goals         <ul> <li>Home waste audit</li> <li>Measuring environmental impact</li> </ul> </li> </ul> |
| Module 2 (C          | Credit 1)-: Practical Home Composting and Compost Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Learning<br>Outcomes | After learning the module, learner will be able to,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | <ol> <li>Set up a composting system suitable for home use and<br/>maintain the compost pile and monitor key parameters.</li> <li>Identify and solve common composting problems (odor, pests,<br/>imbalance) and harvest, store, and use finished compost<br/>effectively.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Content | 1. Setting Up a Compost                                                                 |
|---------|-----------------------------------------------------------------------------------------|
| Outline | System                                                                                  |
|         | <ul> <li>Choosing a bin or DIY</li> </ul>                                               |
|         | methods                                                                                 |
|         | <ul> <li>Selecting a site (balcony, backyard, apartment-friendly methods)</li> </ul>    |
|         | <ul> <li>Layering technique and starter materials</li> </ul>                            |
|         | 2. Managing the Composting Process                                                      |
|         | <ul> <li>Turning the pile and aeration</li> </ul>                                       |
|         | <ul> <li>Moisture monitoring and temperature control</li> </ul>                         |
|         | <ul> <li>Speeding up decomposition naturally</li> </ul>                                 |
| Γ       |                                                                                         |
|         | 3. Troubleshooting                                                                      |
|         | <ul> <li>Bad smells, pest issues, slow decomposition</li> </ul>                         |
|         | <ul> <li>How to rebalance the pile (adjusting greens/browns)</li> </ul>                 |
|         | 4. Harvesting and Using Compost                                                         |
|         | <ul> <li>Signs compost is ready</li> </ul>                                              |
|         | <ul> <li>Screening and storing compost</li> </ul>                                       |
|         | <ul> <li>Applications: potting mix, garden beds, lawn booster, tree mulching</li> </ul> |
|         | 5 Sustainability Integration                                                            |

- 5. Sustainability Integration
  - Composting as a zero-waste lifestyle habit
     Community composting options and outroad
- Community compositing options and outreach

- Create a personal compost bin (on-site or virtual demo)
- Weekly composting log (materials added, pile condition)
- Troubleshooting scenarios (case studies)
- Field visit to a local compost facility (optional)
- DIY compost bin building from recycled materials

#### **References:**

- "Let It Rot! The Gardener's Guide to Composting" by Stu Campbell
- EPA Composting at Home <u>https://www.epa.gov/recycle/composting-home</u>
- Local municipality or NGO composting guidelines

### 4.5 SEC (2 Credits)

| Course Title       | Biochemistry(Practical)                                                                                                                                                      |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Credit             | 2                                                                                                                                                                            |  |  |  |
| Course             | After going through the course, learners will be able to -                                                                                                                   |  |  |  |
| Outcomes           | 1.Analyze experimental results, draw conclusions, and troubleshoot                                                                                                           |  |  |  |
|                    | issues                                                                                                                                                                       |  |  |  |
|                    | 2.Describe measuring enzyme activity and kinetics                                                                                                                            |  |  |  |
|                    | 3.Modify protein purification methods                                                                                                                                        |  |  |  |
|                    | 4.Handle different biochemical instruments                                                                                                                                   |  |  |  |
| Module-1 (Credit   | 1):Bioenergetics Mechanism                                                                                                                                                   |  |  |  |
| Learning           | After learning the module, learners will be able to -                                                                                                                        |  |  |  |
| Outcomes           | 1.Understand the chemical nature of biomolecules                                                                                                                             |  |  |  |
|                    | 2.Interpret result and drawing conclusions                                                                                                                                   |  |  |  |
|                    | 3.Develop critical thinking and problem solving skills                                                                                                                       |  |  |  |
| Content Outline    | <ul> <li>Properties of water, Concept of pH and buffers,<br/>preparation of buffers and Numerical problems to explain<br/>the concepts</li> </ul>                            |  |  |  |
|                    | <ul> <li>Numerical problems on calculations of Standard Free<br/>Energy Change and Equilibrium constant</li> <li>Standard Free Energy Change of coupled reactions</li> </ul> |  |  |  |
|                    | <ul> <li>Qualitative/Quantitative tests for carbohydrates, reducing<br/>sugars, non reducing sugars</li> </ul>                                                               |  |  |  |
|                    | <ul> <li>Qualitative/Quantitative tests for lipids and proteins</li> </ul>                                                                                                   |  |  |  |
| Module-2 (Credit 1 | ):Study of Enzyme Kinetics                                                                                                                                                   |  |  |  |
| Learning           | After learning the module, learners will be able to -                                                                                                                        |  |  |  |
| Outcomes           | 1.Determine key kinetics parameters such as Km and Vmax by using                                                                                                             |  |  |  |
|                    | experimental data and graphical methods                                                                                                                                      |  |  |  |
|                    | 2. Investigate how factors affect on enzyme activity                                                                                                                         |  |  |  |
|                    | 3.Determine the need for vitamin supplementation based on estimation                                                                                                         |  |  |  |
|                    | results                                                                                                                                                                      |  |  |  |
| Content Outline    | • Study of protein secondary and tertiary structures with the                                                                                                                |  |  |  |
|                    | <ul> <li>help of models</li> <li>Study of enzyme kinetics – calculation of Vmax , Km, Kcat values</li> </ul>                                                                 |  |  |  |
|                    | <ul> <li>Study effect of temperature, pH and Heavy metals on<br/>enzyme activity</li> </ul>                                                                                  |  |  |  |
|                    | Estimation of any one vitamin                                                                                                                                                |  |  |  |

### Assignments/Activities towards Comprehensive Continuous Evaluation (CCE):

1) Lab report -Brief outline of the experiments

2) Create a flowchart or diagram of the experimental procedure to visualize the steps involved.

3) Oral Presentations-Which assesses their understanding and communication skills

4) Problem solving on Enzyme kinetics

### **References:**

1. Practical Textbook of Biochemistry for medical students by Jaypee Brothers Medical Publisher,4th edition 2024

2. Manual of Practical Biochemistry by Orient BlackSwan publisher, 4 th edition 2023

3. Manual of Practical Biochemistry by GUlabKanwar, RemeshKunjunni 2020

### 4.7 Community Engagement (2 credits)

### SOP for evaluation of CE:

| 4. Assessment                             | Evaluation criterion                         | Total Marks 20 |
|-------------------------------------------|----------------------------------------------|----------------|
| b                                         | 5. Log Book (Daily documenting the field     | 5 Marks        |
| y Faculty mentor                          | work activities)                             |                |
|                                           | 6. Initiative                                | 5 Marks        |
|                                           | 7. Trainee's Commitment towards work         | 5 Marks        |
|                                           | 8. Viva-voce                                 | 5 Marks        |
| 5. Attendance                             | Punctuality                                  | 10 Marks       |
| 6. Presentation on                        |                                              | 20 Marks       |
| the Community                             | 4. Quality of content [10m]                  | 10 Marks       |
| engagement                                | <b>f.</b> Accuracy and relevance of the      | 2 Marks        |
| projects such                             | information                                  |                |
| as-                                       | g. Depth of Analysis: Does it go             | 2 Marks        |
| <ul> <li>Microbial analysis of</li> </ul> | beyond surface-level facts and               |                |
| various water                             | show                                         |                |
| samples                                   | understanding?                               |                |
| <ul> <li>Microbial analysis of</li> </ul> | h. Structure: Is the information logically   | 2 Marks        |
| various food                              | organized? (eg. Intro, body, conclusion)     |                |
| samples                                   | i. Delivery: Voice and clarity, speed of     | 2 Marks        |
| <ul> <li>Microbial analysis</li> </ul>    | delivery                                     |                |
| of various samples                        | j. Confidence: maintaining eye contact,      | 2 Marks        |
| to assess air                             | body language and                            |                |
| quality                                   | audience engagement                          |                |
| Microbial analysis of                     | 5. Visual Aids                               | 5 Marks        |
| samples of Skin                           | <b>d. Quality of Slides:</b> Are they neat,  | 2 Marks        |
| flora                                     | readable, and visually engaging?             |                |
|                                           | e. Use of Media: Are videos, images, or      | 2 Marks        |
|                                           | charts used effectively?                     | Linanko        |
|                                           | <b>f. Relevance:</b> Do visuals              | 1 Marks        |
|                                           | enhance understanding                        |                |
|                                           | or distract from the topic?                  |                |
|                                           | 6. Time Management                           | 3 Marks        |
|                                           | c. Presentation should be in a required time | 2 Marks        |
|                                           | frame                                        |                |
|                                           | d. All the section (introduction             | 1 Marks        |
|                                           | ,body,                                       |                |
|                                           | conclusion) should be given equal time       |                |
|                                           | 5. Q & A Handling: Are they able to answer   | 2 Marks        |
|                                           | questions clearly and correctly              |                |

### 5.1 Clinical Microbiology (Theory+ Practical): Major Core (4 Credits)

| Course     | Clinical Microbiology (Theory + Dractical)                                                                                        |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Title      | Clinical Microbiology (Theory + Practical)                                                                                        |  |  |
|            | 4 (2 + 2)                                                                                                                         |  |  |
| Course     | 4 (2+2)                                                                                                                           |  |  |
| Credits    |                                                                                                                                   |  |  |
| Course     | After going through the course, learner will be able to,                                                                          |  |  |
| Outcomes   | 1. Recognize and analyze different microbes present in Air, Water and Soil                                                        |  |  |
|            | 2. Notify the common tests used for detecting environmental microbes                                                              |  |  |
|            | 3. Appreciate the dynamics of air, water and soil microbial population                                                            |  |  |
|            | 4. Identify the scope and relevance of clinical microbiology                                                                      |  |  |
| Module 1 ( | Credit 1) - Clinical Microbiology I                                                                                               |  |  |
| Learning   | After learning the module, learner will be able to,                                                                               |  |  |
| Outcomes   |                                                                                                                                   |  |  |
|            | 1. Introduce and apprehend to the air and soil microbial essence                                                                  |  |  |
|            | 2. Evaluate the various air borne diseases and methods of air sanitation                                                          |  |  |
|            | 3. Demonstrate role of PPGPRs in soil fertility                                                                                   |  |  |
| Content    | A. Air Microbiology                                                                                                               |  |  |
| Outline    | <ul> <li>Air composition, Distribution and sources of microorganisms in air</li> </ul>                                            |  |  |
|            | (Indoor and outdoor)                                                                                                              |  |  |
|            | <ul> <li>Dispersal of microorganisms in air (Droplet, droplet nuclei)</li> </ul>                                                  |  |  |
|            | Air pollution                                                                                                                     |  |  |
|            | <ul> <li>Microbiological analysis of air – Air sampling methods, Qualitative<br/>and Quantitative methods</li> </ul>              |  |  |
|            | • Air Borne Diseases- Tabulation of bacterial, viral, fungal diseases                                                             |  |  |
|            | <ul> <li>Significance of microorganisms in air with respect to</li> </ul>                                                         |  |  |
|            | hospitals and laboratories Pharmaceutical industries, microbiological                                                             |  |  |
|            | laboratories                                                                                                                      |  |  |
|            | <ul> <li>Methods for air sanitation (Include concept of HEPA Filters and others)</li> </ul>                                       |  |  |
|            | B. Soil Microbiology                                                                                                              |  |  |
|            | <ul> <li>Soil as a dynamic terrestrial environment for microorganisms</li> </ul>                                                  |  |  |
|            | Soil, Plants and Nutrients                                                                                                        |  |  |
|            | <ul> <li>Microbial Diversity in Soils and their activities</li> </ul>                                                             |  |  |
|            | <ul> <li>Formation of different soils</li> </ul>                                                                                  |  |  |
|            | <ul> <li>Microbiological examination of soil</li> <li>Major biogeochemical evalue (Carbon Nitrageo Culobur Pheenberry)</li> </ul> |  |  |
|            | <ul> <li>Major biogeochemical cycles (Carbon, Nitrogen, Sulphur, Phosphorus)</li> <li>Dala of DCDDa in apil fortility</li> </ul>  |  |  |
| Module 2 ( | Role of PGPRs in soil fertility Credit 1) - Clinical Microbiology II                                                              |  |  |
| Learning   | After learning the module, learner will be able to,                                                                               |  |  |
| Outcomes   |                                                                                                                                   |  |  |
| Jucomes    | 1. Recognize the study of microbial analysis in water and                                                                         |  |  |
|            | access the bacteriological examination for water potability                                                                       |  |  |
|            | 2. Acquaint procedure for Domestic and Municipal water treatment                                                                  |  |  |
|            |                                                                                                                                   |  |  |

| Content | • | Microorganisms in natural aquatic environments- Fresh water and                                                                                                                        |
|---------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outline |   |                                                                                                                                                                                        |
|         |   | marine waters habitat                                                                                                                                                                  |
|         | • | Bacteriological examination for water potability - Significance<br>of fecal indicator organisms, MPN, Membrane Filter technique,<br>Presumptive, Confirmed, Completed Test, IMViC test |
|         | • | Water purification processes                                                                                                                                                           |
|         | • | Composition of sewage, Measuring waste water quality                                                                                                                                   |

|            | <ul> <li>Domestic waste water treatment processes</li> </ul>                             |
|------------|------------------------------------------------------------------------------------------|
|            | <ul> <li>Municipal sewage treatment process</li> </ul>                                   |
| Module 3 ( | Credit 1) - Clinical Microbiology I Practical                                            |
| Learning   | After learning the module, learner will be able to,                                      |
| Outcome    |                                                                                          |
|            | 1. Inspect air microflora                                                                |
|            | 2. Determine Microflora in soil                                                          |
| Course     | Determination of air microflora and sedimentation rate.                                  |
| Outline    | <ul> <li>Study of soil Microflora (Bacteria, Yeasts and Molds, Actinomycetes)</li> </ul> |
|            | <ul> <li>Winogradsky's column-Study of sulphur cycle</li> </ul>                          |
|            | <ul> <li>Isolation of nitrogen fixers (PGPRs) from soil and root nodules</li> </ul>      |
|            | <ul> <li>Visit to a sewage treatment plant (Concept of BOD/COD)</li> </ul>               |
| Module 4 ( | Credit 1) - Clinical Microbiology II Practical                                           |
| Learning   | After learning the module, learner will be able to,                                      |
| Outcome    |                                                                                          |
|            | 1. Examine the routine microbiological water potability                                  |
|            | 2. Analyse and investigate microbial study for sewage.                                   |
| Course     | <ul> <li>Isolation of agar digestors from sea water.</li> </ul>                          |
| Outline    | • Testing the potability of water : SPC, Determination of coliform count in              |
|            | water by MPN, Membrane filtration technique, Presumptive, confirmed and                  |
|            | Completed tests, IMViC test.                                                             |
|            | <ul> <li>Microbiology of raw sewage</li> </ul>                                           |
| Accianmon  | ts/Activities towards Comprehensive Continuous Evaluation                                |

- 1. Project work:
- Prepare a poster presentation on the impact of microorganisms in air on human life.
- Carry out a bacteriological examination for determining water potability.
- 2. Seminar Presentation:
- Methods of air sanitation.
- Domestic water waste treatment process
- Microbial diversity in soil and their activity

### **Reference:**

- 1. Michael J. Pelczar Jr., E.C.S. Chan, Noel R. Krieg, Microbiology TMH 5th Edition, 1998
- 2. Cruikshank, Medical Microbiology, Vol-II, reprint. Publisher, Churchill Livingstone, 1975.
- 3. Michael T. Madigan & J. M. Martin, Brock, Biology of

Microorganisms 11th Ed. International edition, Pearson Prentice Hall, 2006.

- 4. Prescott, Hurley, Klein-Microbiology,9<sup>th</sup> Edition, International edition, McGraw Hill, 2013.
- 5. Kathleen Park Talaro & Arthur Talaro Foundations in Microbiology, 11th edition McGraw Hill.2006.
- 6. Tortora, Funke and Case, Microbiology an Introduction, 10th Edition, Benjamin- Cummings Publishing Company, 2009.
- 7. M. Madigan, J. Martinko, J. Parkar, "Brock Biology of microorganisms", 12th ed., Pearson Education International, 2009.
- 8. Fairbanks and Anderson, "Genetics", Wadsworth Publishing Company, 1st edition, 1999.

- 9. Prescott, Harley and Klein, "Microbiology", 6th edition McGraw Hill international edition. 2003.
- 10. Tortora G. J. Microbiology: An Introduction, Benjamin Cumming Corp.1<sup>st</sup> edition, 2008.
- 11. J.C.H. Steele, Clinics in laboratory medicine, Emerging Infections and their causative agents. vol 24, issue 3, September 2004.
- Ananthnarayan & Paniker, Textbook of Microbiology, 8th edition 2009
   Godkar Praful, Medical laboratory technology, 2nd edition. 2006