

SNDT Women's University, Mumbai

Bachelor Of Science (Chemistry)

B.Sc. In Chemistry

As Per NEP – 2020

Semester – I & II

Syllabus (W.E.F. Academic Year 2025-26)

Terminologies

Vertical	Full-form/Definition	Remarks	Related to Major and Minor Courses
Major (Core)	Subject comprising Mandatory and Elective Courses, Major Specific IKS, Vocational Skill Courses, Internship/ Apprenticeship, Field Projects, Research Projects connected to Major	Minimum 50% of total credits corresponding to Three/Four - year UG Degree- Mandatory Courses	Related to the Major
Minor Course	Course from same or different Faculty	Minimum 18-20 Credits to be completed in the first three years of UG Programme	Related to the Minor
OEC	Open Elective Courses/ Generic courses		OEC is to be chosen compulsorily from faculty other than that of the Major
VSC	Vocational Skill Courses, including Hands on Training corresponding to the Major and/or Minor Subject	8-10 credits, to be offered in first three years, wherever applicable vocational courses will include skills based on advanced laboratory practical's of Major	Related to the Majoror Minor
SEC	Skill Enhancement Courses	in I and II year, to be	Related to the Major or Minor any relevant Skill
AEC	Ability Enhancement Courses	08 credits, to be offered in I and II year, English: 04 Credits to be earned in Sem - I, Modern Indian Language of 04 credits to be offered in II year	NA
VEC	Value Education Courses	Understanding India, Environmental science/education, Digital andtechnological solutions, Health & Wellness, Yoga education, sports, and fitness	NA

IKS	Indian Knowledge System	Generic IKS Course: basicknowledge of the IKS to be offered at First Year level	Major-Specific IKS Courses: advanced information about the major, part of the major credit to be offered at second- or third- year level
τιο	On-Job Training (Internship/Apprenticeship)	Corresponding to the MajorSubject	Related to the Major
FP	Field projects	Corresponding to the MajorSubject	Related to the Major
СС	Co-curricular Courses	Health and Wellness, Yoga education sports, and fitness,Cultural Activities, NSS/NCC and Fine/ Applied/Visual/ Performing Arts	NA
CE	Community Engagement andservice		Related to Major
RP	Research Project	corresponding to the MajorSubject	Related to Major

Program Template

Degree		B.Sc.
Program		Chemistry
Preamble (Brief Introduction to the program)		The undergraduate program in Chemistry, aligned with NEP 2020 guidelines, offers a robust foundation in chemical sciences, blending core subjects, electives, and hands-on laboratory experiences. This program prepares students for careers in academia, industry, research, environmental science, pharmaceuticals, and entrepreneurship. Graduates will be equipped with critical thinking, problem-solving skills, and a deep understanding of chemical principles, ready to contribute to sustainable development and innovation. The program emphasizes a comprehensive understanding of various chemistry disciplines, practical application of knowledge, and the development of advanced laboratory techniques. After completing this program, students will develop expertise in instrumentation and laboratory techniques, enabling them to conduct independent experiments and interpret data accurately. They will demonstrate strong theoretical and practical knowledge, applying it effectively in professional settings. Students will enhance their analytical andproblem-solving skills, understanding the societal and environmental impactof chemical solutions and advocating for sustainable practices. Additionally, they will engage in lifelong learning, integrate interdisciplinary knowledge, and demonstrate effective communication and teamwork skills, preparing them for a dynamic and evolving job market.
Programme Specific Outcomes		After completing this program, the learner will be able to,
(PSOs)	1.	Apply principles of chemistry and creative thinking to solve diverse problemsin chemistry
	2.	Critically analyze chemical data, evaluate scientific literature, and constructcoherent scientific arguments.
	3.	Design experiments and use appropriate methodologies for data collection and analysis.
	4.	Effectively communicate chemical concepts and research findings clearly inwriting and orally.
	5.	Work effectively in diverse teams and exhibit leadership skills in guidingprojects and research initiatives.
	6.	Utilize ICT tools for data analysis and research.
	7.	Apply ethical principles, promote sustainability, and engage in communityoutreach to advance public understanding of chemistry
Eligibility Criteriafor Programme		12 th standard Science
Intake		120

Structure with Course Title

B.Sc. In Chemistry

SN	Courses	Type of Course	Credits	Marks	Int	Ext
	Semester I					
10032101	Surface Chemistry	Major (Core)	2	50	50	0
		Major (Core)	2	50	50	0
		Major (Core)	2	50	50	0
10432111	Dyes and Pigment	OEC	4	100	50	50
10632101	Practical of Chemistry	VSC S1	2	50	50	0
10732101	Leadership development Program	SEC	2	50	0	50
10810111	English For Academic Writing- Paper I (For Students of English Medium) English Language and Literature- I (For Students of Non-English	AEC (English) (Any One)	2	50	0	50
11051111	medium)	IKS	2	50	0	50
11051111	Inception of India Knowledge System	(Generic)	2	50	0	50
10952111	Introduction to Indian Constitution	VEC	2	50	0	50
11450121	Basics of National Service Scheme					
11450221	National Cadets Corps. (NCC) Studies- I	CC (Any	2	50	50	0
11450322	Health and Wellness	One)				
11450421	Performing Arts Exploration					
			22	550	300	250

SN	Courses	Type of Course	Credits	Marks	Int	Ext
	Semester II					
20032111	Aromatic Chemistry	Major (Core)	2	50	0	50
		Major (Core)	2	50	0	50
		Major (Core)	2	50	0	50
		VSC S2	2	50	50	0
		VSC S3	2	50	50	0
20432111	Science Cafe	OEC	4	100	50	50
20732101	Personality And Communication	SEC	2	50	50	0
20810111 20810112	English For Academic Writing- Paper II (For Students of English Medium) English Language and Literature- II (For Students of Non-English medium)	AEC (English) (Any One)	2	50	0	50
20952111	Environment Awareness	VEC	2	50	0	50
20952111	Environment Awareness	VEC	2	50	0	50
21450121	Volunteerism and National Service Scheme					
21450221	National Cadets Corps. (NCC) Studies- II	CC (Any One)	2	50	50	0
21450323	Yoga Education					
21450421	Fine Art	_				
			22	550	250	300

Exit With UG Certificate With 4 Extra Credits (44+4 Credits)

Syllabus

Semester I

1.1 Major (Core)

Course Title	Surface Chemistry
Course Credits	2
Course Outcomes	After going through the course, learners will be able to
	1. Apply adsorption principles using Freundlich and Langmuir isotherms inindustrial processes
	2. Analyze physisorption and chemisorption characteristics and factors affectinggas adsorption on solids.
	3. Evaluate the effectiveness and selectivity of homogeneous, heterogeneous, andenzymatic catalysts
	4. Design experiments to investigate colloid properties and phenomena like Tyndalleffect and Brownian movement
Module 1 (Cr	edit 1) - Adsorption & Catalysis
Learning Outcomes	After learning the module, learners will be able to,
	1. Utilize the Freundlich and Langmuir isotherms to address adsorption issuesinvolving gases on solids.
	2. Assess the effectiveness and selectivity of homogeneous and heterogeneouscatalysts, including enzymatic mechanisms.
Content Outline	 Adsorption- Physisorption and chemisorption and their characteristics, factors affecting adsorption of gasses on solids - Freundlich and Langmuir adsorption isotherms, adsorption from solutions.
	 Catalysis - Homogeneous and heterogeneous, activity and selectivity of solid catalysts, enzymecatalysis and its mechanism.
	 Colloidal state- distinction among true solutions, colloids and suspensions, classification of colloids -lyophilic. Lyophobic; multimolecular, macromolecular and associated colloids (micelles). preparation and properties of colloids -
	 Tyndall effect. Brownian movement, electrophoresis, dialysis, coagulation and flocculation: Emulsions and their

	characteristics.
Module 2 (Ci	redit 1) - Reaction Dynamics
Learning Outcomes	After learning the module, learners will be able to,
	1. Implement the concepts of inductive, electromeric, resonance, and mesomericeffects in analyzing organic reactions.
	 Examine the types, shapes, and relative stability of electrophiles, nucleophiles, and reaction intermediates like carbocations and free radicals.
Content Outline	• Electronic Displacements: Inductive, electromeric, resonance and mnesomeric effects, hyperconjugation and their applications; Dipole moment; Organic acids andbases; their relativestrength. Homolytic and heterolytic fission with suitable examples. Curly arrow rules;
	• Electrophiles and Nucleophiles; Nucleophilicity and basicity; Types, shape andrelative stability of carbocations, carbanions, free radicals and carbenes. Introduction to types of organicreactions and their mechanism: Addition, Elimination and Substitution reactions.
	• Carbon-carbonsigma bonds Chemistry of alkanes: Formation of alkanes, Wurtz Reaction, Wurtz-Fittig Reactions, Free radical substitutions: Halogenation -relativereactivity and selectivity.

Module 1 - Adsorption & Catalysis

Project 1: Household Adsorbent Investigation

Description: Students will explore adsorption principles using household materials like activated charcoal, tea bags, and various colored solutions such as food coloring or ink. By placing the household adsorbents in containers with colored solutions, they will observe and document the changes in color over time. Through simple filtration techniques, students will separate the adsorbents from the solutions and analyze the remaining color concentration. This project not only demonstrates adsorption concepts but also connects classroom learning to real-world scenarios, such as water purification or air filtration systems, that are applicable in both urban and rural environments.

Safety Measures: Ensure students handle materials safely, avoid ingestion of any chemicals, and conduct experiments in well-ventilated areas to prevent exposure to harmful fumes.

Project 2: Kitchen Catalyst Investigation

Description: Students will explore catalysis principles using common kitchen ingredients

like potatoes, yeast, and hydrogen peroxide. By mixing hydrogen peroxide with grated potatoes and yeast solutions in separate containers, students will observe the production of foam over time. They will measure and compare the quantity of foam produced by each catalyst to evaluate their effectiveness in catalyzing the decomposition of hydrogen peroxide. This project provides a hands- on experience that bridges classroom learning with real-world applications, such as understanding the role of catalysts in food processing or environmental remediation, and can be easily conducted in home kitchens or school labs.

Safety Measures: Students should handle hydrogen peroxide with care, wear protective gloves and goggles, and conduct experiments in a controlled environment to prevent spills and accidents.

Module 2 (Credit 1) - Reaction Dynamics

Project 1: Kitchen Chemistry: Organic Reactions

Description: Students will explore organic reaction mechanisms using readily available kitchen ingredients such as vinegar, baking soda, and lemon juice. By conducting simple experiments like

vinegar-baking soda reaction or lemon juice with milk, students will observe the formation of reaction products and propose mechanisms based on their understanding of inductive and resonance effects. This project fosters a connection between classroom learning and real-world scenarios, such as understanding the chemistry behind food preservation or cooking processes, and can be easily conducted in home kitchens or school labs.

Safety Measures: Students should handle chemicals with care, avoid ingestion, and conduct experiments in a well-ventilated area to prevent exposure to fumes.

Project 2: Home Chemistry: Alkane Reactivity

Description: Students will investigate alkane reactivity using common household solvents like rubbing alcohol and various cleaning agents containing chlorine. By mixing alkanes with these solvents in separate containers, students will observe the formation of reaction products and assess the relative reactivity and selectivity of different halogens. This project allows students to connect classroom learning with real-world applications, such as understanding the chemistry behind cleaning products or disinfectants used in everyday life, and can be easily conducted in home environments or school labs.

Safety Measures: Students should handle chemicals with care, avoid ingestion, and conduct experiments in a well-ventilated area to prevent exposure to fumes.

Reference Books:

- 1. Cotton, F. A., Wilkinson, G., & Gaus, P. L. (1987). Basic Inorganic Chemistry (5th ed.). JohnWiley.
- 2. Rao, C. N. R. (2000). University General Chemistry. Macmillan, India.
- 3. Chanda, M. (2000). Atomic Structure and Chemical Bond (4th ed.). Tata McGraw-Hill.

1.4 Open Elective Course (OEC)

Course Title	Dyes and Pigment
Course Credits	4
Course Outcomes	After going through the course, learners will be able to
	1. Apply fundamental dye concepts practically in textiles.
	2. Analyze diverse dye, pigment, and auxiliaries' applications.
	3. Evaluate production methods and properties of dyes.
	4. Design innovative solutions for textile industry challenges.
Module 1 (Cre	edit 1) - Dye Fundamentals
Learning Outcomes	After learning the module, learners will be able to,
	1. Investigate fundamentals of dyes, including chemical chromophores.
	2. Assess dye classes and their principal applications, including synthesis of commercial dyes.
Content Outline	 Fundamental of dyes: General, Important chemical chromophore of dyes Dyes Class for principle applications, Description of individuals of class andsynthesis of some commercial dyes.
Module 2 (Cre	edit 1) - Textile Dyeing Techniques
Learning Outcomes	After learning the module, learners will be able to,
outcomes	1. Explore dying processes of textiles, including pre-treatment of fibers and dyeing methods for various textiles, as well as textile finishes and auxiliaries.
	2. Examine non-textile dyes, such as those used in leather, fur, hair, food, ink,photography, and as indicator dyes.
Content Outline	 Dying processes of textiles: Pre-treatment of textile fibers, dyeing methods forvarious textiles, Textile finishes and Textile auxiliaries. Non textile dyes: Leather, Fur, Hair, Food, Ink, Photographic, indicator dyes.
Module 3 (Cre	edit 1) - Zinc Oxide Pigments
Learning Outcomes	After learning the module, learners will be able to,
	1. Develop a study on fundamentals, properties, and production of Iron Oxidepigments, specifically focusing on the precipitation process.

	2. Examine fundamentals, properties, and production methods of Zinc Oxide pigments, including raw materials and processes such as the Direct (American)and Precipitation processes.	
Content Outline	 Zinc Oxide pigments (Fundamentals and properties, Raw materials, Directprocess (American process), Precipitation process) Iron oxide pigments (Fundamentals and properties, Production of iron oxidepigment by precipitation process) 	
Module 4 (Cre	dit 1) - Advanced Dye Applications	
Learning Outcomes	After learning the module, learners will be able to,	
	1. Design experiments for synthesis, characterization, and application of dyes.	
	 Explore additional aspects of dyes, such as non-mutagenic variants and colorants for high-tech fluorescent brightening agents. 	
Content Outline	 Synthesis, Characterization and application. Some other aspects related to dyes: Non mutagenic dyes, colorants for hightechnology Fluorescent Brightening agents. 	

Module 1 - Dye Fundamentals

Project 1: Chromophore Exploration

Description: Students will investigate the fundamentals of dyes by analyzing the chemical chromophores responsible for coloration. They will select common household items such as food coloring, ink cartridges, or fabric dyes and perform simple separation techniques like paper chromatography to isolate and identify the chromophores present. Through observation and analysis, students will deepen their understanding of dye chemistry and its practical applications, particularly in textile dyeing processes.

Safety Measures: Ensure students handle chemicals safely and conduct experiments in a well - ventilated area.

Module 2 - Textile Dyeing Techniques

Project 1: Fabric Dyeing Experiment

Description: Students will explore textile dyeing techniques by designing and conducting experiments to dye fabric samples using natural or synthetic dyes. They will pre-treat fabric fibers to enhance dye uptake and select appropriate dyeing methods such as immersion, padding, or printing techniques. Through hands-on experimentation, students will observe and analyze the effects of different dyeing parameters on color intensity, fastness properties, and overall textile appearance. This project provides practical experience in textile dyeing processes and allows students to apply their knowledge to address challenges in the textile industry. Safety Measures: Ensure students handle dyes and chemicals safely, follow proper dyeing protocols, and dispose of waste materials appropriately.

Module 3 - Zinc Oxide Pigments

Project 1: Zinc Oxide Pigment Production Simulation

Description: Students will simulate the production process of zinc oxide pigments, focusing on the precipitation method. They will research the raw materials and equipment used in the Direct (American) and Precipitation processes and develop a stepby-step simulation. Using available resources, students will set up experimental setups mimicking the precipitation reaction, observing the formation and properties of zinc oxide pigments. Through this hands-on simulation, students will gain a deeper understanding of the fundamentals and production methods of zinc oxide pigments, preparing them for real-world applications in the pigment industry.

Safety Measures: Ensure students handle chemicals safely and conduct experiments in a well - ventilated area.

Module 4 - Advanced Dye Applications

Project 1: Dye Synthesis and Application Design

Description: Students will design and execute a series of experiments to synthesize novel dyes and evaluate their application potential. They will explore various synthetic routes to prepare new dye compounds and characterize their chemical structures using spectroscopic techniques. Students will then test the synthesized dyes on different substrates such as fabrics, plastics, or paper to assess their coloration efficiency and fastness properties. Through this project, students will gain hands-on experience in dye synthesis, characterization, and application, fostering innovation and problem - solving skills in dye chemistry.

Safety Measures: Ensure students handle chemicals safely and wear appropriate personal protective equipment.

Reference Books:

- 1. Sharma, B. K. (2014). Industrial Chemistry (18th ed.). Goel Publishing House.
- 2. Kent, J. A. (Ed.). (Year of Publication). Riegel's Handbook of Industrial Chemistry (9th ed.).CBS Publishers.
- 3. Satyaprakash, Tuli, & Basu. (Year of Publication). Advanced Inorganic Chemistry (pp. 458-463).
- 4. Satyaprakash, Tuli, & Basu. (Year of Publication). Advanced Inorganic Chemistry (pp. 830-849).
- 5. Kent, J. A., Bommaraju, T. V., & Barnicki, S. D. (Year of Publication). Handbook of IndustrialChemistry and Biotechnology (13th ed.). Springer.

1.5 Vocational Skill Courses (VSC)

Course Title	Practical of chemistry (Lab)
Course	2
Credits	2
Course Outcomes	After going through the course, learners will be able to,
outcomes	1. Apply titration and hydrolysis techniques to determine the concentrations of iodine, phenol, aniline, acetamide, and ethyl benzoate usingstandard methods.
	2. Analyze complexometric and Mohr's titrations to quantify sodiumcarbonate, sodium bicarbonate, carbonate, hydroxide, and magnesium in mixtures.
	 3. Evaluate the precision and effectiveness of analytical methods likebromination and hydrolysis for determining chemical compositions. 4. Design experiments to measure concentrations of
	4. Design experiments to measure concentrations of ferrous and ferricions, Mohr's salt, and oxalic acid using internal indicator methods and standardized solutions.
Module 1 (Cre	dit 1) - Quantitative Chemical Analysis
Learning Outcomes	After learning the module, learners will be able to,
	1. Utilize titration techniques to determine the concentration of iodine usingstandardized sodium thiosulphate and potassium dichromate solutions.
	2. Examine bromination methods to quantify phenol and aniline accurately.
	3. Assess hydrolysis methods for determining the concentrations of acetamideand ethyl benzoate.
	4. Develop and conduct experiments to accurately measure the concentration of various compounds using standard analytical techniques.
Content Outline	 Determination of iodine using sodium thiosulphate (Standardize sodium thiosulphate solution) using standard potassium dichromate solution.
	• Determination of phenol by bromination method.
	 Determination of aniline by bromination method.
	• Determination of acetamide by hydrolysis method.
	• Determination of ethyl benzoate by hydrolysis method.

Module 2 (Cr	edit 1) - Analytical Methods for Salt Mixtures
Learning	After learning the module, learners will be able to,
Outcomes	 Utilize titration techniques to determine the concentrations of sodiumcarbonate and sodium bicarbonate in a mixture.
	2. Examine the presence and quantification of carbonate and hydroxide togetherin a mixture.
	 Assess the concentrations of Mohr's salt and oxalic acid separately using standardized KMnO4 solution.
	4. Determine the concentrations of ferrous and ferric ions in a solution using theinternal indicator method with a standard K2Cr2O7 solution.
	5. Develop accurate measurements of magnesium using standardized EDTA andzinc sulfate solutions.
Content Outline	• Determination of sodium carbonate and sodium bicarbonate in a mixture.
	• Determination of carbonate and hydroxide present together in a mixture.
	 Determination of Mohr's salt and oxalic acid separately using standardized KMnO4 solution.
	 Determination of ferrous and ferric ions in a solution using standard solution K2Cr2O7 by internal indicator method (diphenylamine or N- phenylanthranilic acid).
	 Determination of magnesium using standard EDTA solution (StandardizeEDTA solution using standard zinc sulfate solution).

Project 1: Iodine Determination

Design an experiment to determine the concentration of iodine in a sample using titration with standardized sodium thiosulphate and potassium dichromate solutions. Prepare a detailed report analyzing the procedure, results, and potential sources of error.

Project 2: Phenol and Aniline Quantification

Conduct bromination reactions to accurately quantify the concentrations of phenol and aniline in given samples. Document the experimental setup, observations, and evaluate the effectiveness of the bromination method.

Project 3: Hydrolysis of Acetamide and Ethyl Benzoate

Perform hydrolysis reactions to determine the concentrations of acetamide and ethyl benzoate in mixtures. Include a step-by-step procedure, results interpretation, and a discussion on the precision of the hydrolysis method.

Project 4: Complexometric and Mohr's Titrations

Utilize complexometric titration to measure magnesium using standardized EDTA and perform Mohr's titration to quantify sodium carbonate and bicarbonate in mixtures. Write a comprehensive report on the methodologies, results, and accuracy of the titrations.

References:

- 1. Sharma, B. K. (2014). Industrial Chemistry (18th ed.). Goel Publishing House.
- 2. Kent, J. A. (1997). Riegel's Handbook of Industrial Chemistry (9th ed.). CBS Publishers.
- 3. Prakash, S., Tuli, G. D., & Basu, S. K. (1944). Advanced Inorganic Chemistry -Volume II (pp.458-463, 830-849). Perfect Paperba

1.6 Skills Enhancement Course

Course Title	Leadership Development Program
Course Credits	2
Course Outcomes	After going through the course, learners will be able to
Cuttomes	1. Apply leadership theories and models to enhance their understanding ofleadership traits, styles, and behaviors.
	2. Explore the impact of different personality types, as per the Five Factor Model, on leadership effectiveness.
	3. Examine the applicability and effectiveness of diverse leadership theories, suchas Trait, Behavioral, and Contingency theories, in varying organizational contexts.
	4. Develop personalized leadership development and succession plans, integrating essential qualities of effective leaders and followers, to fostercollaboration and long-term organizational success
Module 1 (Cred	it 1) - Leadership Fundamentals
Learning Outcomes	After learning the module, learners will be able to,
Outcomes	1. Apply leadership theories and models to enhance their understanding ofleadership traits, styles, and behaviors.
	2. Explore the impact of different personality types, as per the Five Factor Model, on leadership effectiveness.
Content Outline	• Traits, styles, skills, behaviors, vision, inspiration and momentum of leadership
	International framework for analyzing leadership
	Personality Types and Leadership
	• Five factor model of personality Great Man Theory
	• Trait theory
	 Behavioral Theories: Michigan studies, Ohio State University studies, LeadershipGrid, Role theory
	 Contingency Theories: Casual model of Leadership, Normative Decision model, Hersey Blanchard situational model, Vroom & Jago's model, House's Path Goal theory
	Contemporary leadership styles
Module 2 (Cred	it 1) - Leadership Development Strategies

Learning Outcomes	After learning the module, learners will be able to,
	 Identify characteristics, types, and methods for evaluating LeadershipDevelopment and Leadership Succession.
	2. Select appropriate successors, considering emotional aspects and strategies fordeveloping a pool of successors.
	3. Assess essential qualities of effective followership and promote collaborationbetween leaders and followers
Content Outline	 Characteristics, types and evaluation of Leadership Development
	Leadership Succession
	• Choosing a successor, Emotional aspects of leadership succession, developingpool of successors, Follower ship
	• Essential qualities of effective followers, Collaboration between leaders andfollowers.

Project 1: Leadership Traits Analysis

Students will select a historical or contemporary leader and analyze their traits, styles, and behaviors. They will apply relevant leadership theories and models learned in the course to interpret the leader's effectiveness. The project will involve presenting findings on how different leadership traits and styles contribute to organizational success. Through this project, students will enhance their understanding of leadership dynamics and their applicability in real-world scenarios.

Project 2: Personality Impact Assessment

Students will conduct a survey or interview to assess how different personality types influence leadership effectiveness. They will explore the impact of personality traits, as per the Five Factor Model, on leadership styles and behaviors. The project will involve analyzing the data collected to draw conclusions about the relationship between personality and leadership. Through this project, students will gain insights into the complexities of leadership and the role of personality in shaping leadership effectiveness.

Project 3: Leadership Theory Application

Students will choose a specific organizational context and apply diverse leadership theories, such asTrait, Behavioral, and Contingency theories, to analyze leadership challenges. They will identify relevant theories and models to address leadership issues and propose solutions. The project will involve presenting recommendations based on the applicability and effectiveness of selected leadership theories. Through this project, students will develop critical thinking skills and practical problem-solving abilities in the field of leadership.

Project 4: Succession Planning Simulation

Students will simulate a leadership succession scenario within a hypothetical organization. They will develop personalized leadership development and succession plans, considering essential qualities of effective leaders and followers. The project will involve role-playing exercises to evaluate emotional aspects of leadership succession and foster collaboration between leaders and followers. Through this project, students will gain hands-on experience in succession planning and develop strategies for ensuring long-term organizational success.

Reference Books:

- 1. Northouse, P. G. (2015). Leadership (6th ed.). Sage Publications.
- 2. Lussier, R. N., & Achua, C. F. (2016). Effective Leadership (3rd ed.). Cengage Learning.
- 3. Daft, R. L. (2015). Leadership. Cengage Learning.
- 4. Yukl, G. (2016). Leadership in Organizations (6th ed.). Pearson Education

Semester II

2.3 Major (Core)

Course Title	Aromatic Chemistry
Course Credits	2
Course Outcomes	After going through the course, learners will be able to
	 Apply principles of hybridization and VSEPR theory to predict covalent moleculegeometry, distinguishing polar and no polar structures.
	2. Analyze covalent bond polarization factors, including polarizing power and ionpolarizability, to understand bond characteristics as per Fajan's rule.
	 Evaluate dipole moment data to interpret percentage ionic character and deduce molecular structure, assessing characteristics of coordinate covalent compounds and metallic bonds.
	 Design experiments to investigate preparation methods, structural properties, and reactivity of benzene and aromatic compounds, applying Huckel's rule to discern aromaticity and orientation in substitution reactions.
Module 1 (Cre	edit 1) - Molecular Geometry & Polarity
Learning Outcomes	After learning the module, learners will be able to
	1. Implement principles of hybridization and VSEPR theory to construct modelsdepicting the geometry of covalent molecules and discern between polar and nonpolar structures.
	2. Formulate experiments to explore covalent bond polarization, considering factors like polarizing power and ion polarizability, to analyze bond characteristicsand determine the percentage of ionic character using dipole moment measurements.

Content Outline	 Hybridization and geometry of covalent molecules, including VSEPR theory and differentiation between polar and nonpolar molecules.
	 Covalent bonds, polarization of covalent bonds, polarizing power, polarizabilityof ions, Fajan's rule, dipole moment, determination of percentage ionic character from dipole moment, relationship between dipole moment and molecular structure.
	 Coordinate covalent compounds and their characteristics, metallic bond, free electron model, valence bond theory, band theory, weak chemical bonds including intermolecular and intramolecular hydrogen bonds, and van der Waalsforces.
Module 2 (Cro	edit 1) - Aromatic Reactivity & Aromaticity Analysis
Learning Outcomes	After learning the module, learners will be able to
	 Examine the structure of benzene, the nomenclature of aromatic compounds, and general methods of preparation, alongside their physical and chemical properties.
	 Scrutinize the reactivity of aromatic compounds through electrophilic and nucleophilic substitution reactions, analyzing orientation in aromatic disubstitution, and determining aromaticity based on Huckel's rule.
Content Outline	 Structure, nomenclature, and general methods of preparation of aromaticcompounds.
	 Physical and chemical properties, including electrophilic and nucleophilicsubstitution reactions, and orientation in aromatic disubstitution.
	 Aromaticity, including Huckel's rule, anisotropic ring current, and differentiation f aromatic, nonaromatic, and antiaromatic compounds.

No Internal Assessment for this course

Reference Books:

1. F. A. Cotton, G. Wilkinson and P. L. Gaus, "Basic Inorganic Chemistry", 5th edition, John

Wiley,1987.

2. C. N. R. Rao, ,University General Chemistry", Macmillan, India, 2000.

3. Manas Chanda, "Atomic Structure and Chemical Bond", 4th edition, Tata McGraw-Hill, NewDelhi, 2000.

2.6 Open Elective Courses/ Generic (OEC)

Course Title	Science Café	
Course	4	
Credits		
Course Outcomes	After going through the course, learners will be able to,	
Outcomes	1. Apply principles of nutrition to promote good health.	
	2. Analyze the composition and properties of nutrients.	
	3. Evaluate the significance of macro and micro elements.	
	4. Design balanced dietary plans for optimal health.	
Module 1 (Cr	Module 1 (Credit 1) - Fundamentals of Nutrition	
Learning Outcomes	After learning the module, learners will be able to,	
outcomes	 Utilize insights into food functions, nutrition, and nutrients to discern differentlevels of nutrition and recognize signs of malnutrition. 	
	2. Explore the correlation between nutrition and health, identifying visible signs ofwell-being and understanding the significance of adhering to food guides for optimal nutrient utilization	
Content Outline	 Functions of foods, definition of nutrition, nutrients, adequate optimum andgood nutrition, malnutrition. Food as a source of nutrients. 	
	 Interrelationship between nutrition and health, visible symptoms of goodhealth. 	
	 Food guide-basic five food groups and usage of food guide. Use of food in body-digestion, absorption, transport, and utilization of nutrients in the body. 	
Module 2 (Cr	edit 1) Water and Energy in Nutrition	
Learning Outcomes	After learning the module, learners will be able to, 1. Examine the role of moisture in food, including concepts like hydrogen bonding,bound water, free water, water activity, and their influence on food stability.	
	 Assess the concept of energy, encompassing its unit, food as an energy source, the energy value of food, the body's energy requirements, and the utilization of food for energy needs. 	

Content Outline	 Water as a nutrient, function, sources, requirement, structure, water balance – effect of deficiency. Introduction to chemistry of water and ice.
	effect of deficiency. Introduction to chemistry of water and ice.
	 Moisture in food: Hydrogen bonding, Bound water, Free water, Water activityand Food stability.
	 Energy – UNIT of energy, food as a source of energy, energy value of food, the
	body's need for energy, B.M.R. activities. Utilization of food for energy
	requirements. Acid – base balance.
Module 3 (Cro	edit 1) - Carbohydrates and Lipids in Food Science
Learning Outcomes	After learning the module, learners will be able to,
	1. Apply knowledge of carbohydrates for dietary analysis.
	2. Investigate the role of sweetening agents in food.
	3. Assess the properties of lipids for physiological understanding.
	4. Develop processes for handling fats and oils in food processing.
Content Outline	 Carbohydrates- composition, classification, sources, functions, structure,physical & chemical properties.
	 Other sweetening agents, functions of sugar in food (Browning reaction), changes during cooking and processing.
	 Lipids – composition, nomenclature, saturated, unsaturated fatty acids, classification, food sources, functions of fats. Physical and chemical properties, emulsions, chemistry & technology of fat and oil processing. Role of food lipids in flavour
Module 4 (Cro	edit 1) - Minerals and Pigments in Nutrition
Learning Outcomes	After learning the module, learners will be able to,
Outcomes	 Utilize knowledge of mineral functions, sources, bio availability, and deficienciesto evaluate the importance of calcium, iron, iodine, fluorine, sodium, and potassium in human health.
	2. Examine the pigments indigenous to food, including their structure, chemicaland physical properties, and analyze the effects of processing and storage on these pigments.
	 Explore the diversity of flavors present in vegetables, fruits, spices, fermentedfoods, meats, and seafood, discerning their sensory attributes and culinary applications.

Content Outline	 Mineral functions, sources, Bio-availability, and deficiency of following minerals calcium, Iron,Iodine, Fluorine, sodium, potassium.
	• Pigments indigenous to food, structure, chemical and physical properties. Effectof processing and storage.
	 Flavors – Vegetables, fruit and spice flavour, fermented food, Meat and seafood.

Module 1 - Fundamentals of Nutrition

Project: Nutritional Analysis of Daily Diet

Description: Students will conduct a nutritional analysis of their daily diet using readily available online tools or smartphone applications. They will record their food intake for a week and input the data into the software to calculate the intake of macronutrients (carbohydrates, proteins, and fats), micronutrients (vitamins and minerals), and total energy intake. Through analysis, students will identify any deficiencies or excesses in their diet and make recommendations for dietary improvements. This project not only reinforces classroom learning but also equips students with practical skills to make informed dietary choices in their personal and professional lives.

Module 2 - Water and Energy in Nutrition

Project: Water Activity in Common Foods

Description: Students will investigate the concept of water activity in various common food items using easily accessible materials and equipment. They will collect samples of fresh fruits, bread, dried snacks, and other foods from their local grocery store or kitchen. Using a simple homemade water activity meter or by measuring relative humidity, students will determine the water activity of each food sample. Through this hands-on experiment, students will gain insights into the relationshipbetween water activity and food stability, which is crucial for food preservation and safety. This project allows students to apply theoretical knowledge to practical scenarios and enhances their understanding of food science concepts.

Module 3 - Carbohydrates and Lipids in Food Science

Project: Investigating Carbohydrate Content in Everyday Foods

Description: Students will analyze the carbohydrate content of everyday food items using basic qualitative tests that can be performed at home or in a school laboratory. They will select a variety of food samples such as fruits, vegetables, grains, and processed foods from their kitchen or local grocery store. Using simple tests like Benedict's test for reducing sugars and iodine test for starch, students will qualitatively assess the presence of carbohydrates in each food sample. Through this hands-on activity, students will deepen their understanding of carbohydrate composition in foods and its significance in human nutrition. This project fosters practical skills and encourages students to make informed dietary choices based on carbohydrate content.

Module 4 - Minerals and Pigments in Nutrition

Project: Exploring Minerals and Pigments in Everyday Foods

Description: Students will investigate the presence of minerals and pigments in everyday foods through a simple kitchen-based experiment. They will select a variety of fruits, vegetables, grains, and dairy products from their kitchen or local market. Using basic household items like vinegar, iodine solution, and pH paper, students will test for the presence of minerals such as calcium, iron, and potassium, as well as natural pigments like anthocyanins and carotenoids. Through this hands- on exploration, students will gain practical experience in identifying essential nutrients and bioactive compounds in foods. This project not only reinforces classroom learning but also empowers students to make healthier food choices for themselves and others.

References Books:

- Damodaran, S., Parkin, K. L., & Fennema, D. R. (2007). Fennema's Food Chemistry (4th ed.). CRC Press.
- 2. Guthrie, H. A. (1983). Introductory Nutrition (5th ed.). Mosby.
- 3. Meyer, L. H. (2004). Food Chemistry. Textbook Publishers. ISBN: 0758149204.
- 4. Mudambi, S. R., Rao, S. M., & Rajagopal, M. V. (2006). Food Science (2nd ed.). New AgeInternational.
- 5. Mudambi, S. R., & Rajgopal, M. V. (2001). Fundamentals of Foods and Nutrition (4th ed.). NewAge International Publishers.
- 6. Shakuntla, M. N., & Shadaksharaswamy, M. (2013). Food Facts and Principles. New AgeInternational.

2.7 Skill Enhancement Courses (SEC)

Course Title	Personality And Communication
Course Credits	2
Course Outcomes	 After going through the course, learners will be able to, 1. Critically analyze Personality constructs, elucidate Determinants ofDevelopment, and examine Perception dynamics. 2. Evaluate Factors impacting Association, delineate Personality Traits, and fosterEffective Habit formation.] 3. Explore Motivation theories, engage in rigorous Self- Assessment, and implementEmotional Intelligence strategies.
	4. Proficiently navigate Effective Communication channels, demonstrateAssertiveness, and exhibit proficient Decision-making prowess
Module 1 (Cre	edit 1) - Leadership and Effective Decision Making
Learning Outcomes	 After learning the module, learners will be able to, 1. Define Personality, explore Determinants of Personality Development, and examine the Perception process to comprehend individual behavior and interactions. 2. Investigate Factors of Association, including Relationship dynamics, PersonalityTraits, and the development of Effective Habits and Emotional Intelligence for interpersonal effectiveness
Content Outline	 Define Personality, Determinants of Personality Development, Perception-Definition,Perceptual Process Factors of Association -Relationship, Personality Traits, Developing Effective Habits, Emotional Intelligence, Motivation, Introspection, Self-Assessment, Self-Appraisal & Self- development, Sigmund Freud Id, Ego & SuperEgo Self Esteem and Maslow, Self Esteem & Erik Erikson, Mind Mapping, Competency Mapping & 360 Degree Assessment, Types of Personalities - Introvert, Extrovert & Ambivert person, Effective Communication & Its key aspects, Assertiveness, Decision making skills, Conflict: Process & Resolution, Leadership & Qualities of Successful Leader
Module 2 (Cre	edit 1) - Attitude and Stress Management

r	
Learning Outcomes	After learning the module, learners will be able to,
	 Implement strategies for developing a positive attitude, drawing insights fromCarl Jung's contributions to personality development theory.
	2. Delve into Stress Management, including an introduction to stress, its causes, and techniques for managing stress effectively.
	 Examine the importance of Time Management, learning various techniques andstyles to optimize productivity and efficiency.
Content Outline	 Interpersonal Relationship, Personality – Spiritual journey beyond managementof change,Good manners & Etiquettes,Effective Speech, Understanding Body language, projective positive body language.
	 Attitude - Concept -Significance -Factors affecting attitudes – Positive attitude-Advantages-Negative attitude-Disadvantages –Ways to develop positive attitude
	• Carl Jung 's contribution to personality development theory
	 Stress Management: Introduction, Causes, stress management techniques
	 Time management: Importance of time management, Techniques of timemanagement, Time management styles.

Project 1: Personality Development Analysis

Students will critically analyze the constructs of personality and determine the factors influencing personality development. They will conduct a survey to gather data on how different determinants, such as genetics, environment, and experiences, shape personality. The project will also involve anin-depth study of the perception process and how it affects individual behavior and interactions. Students will compile their findings into a detailed report, presenting insights and implications for personal growth.

Project 2: Habit Formation and Emotional Intelligence

Students will evaluate the factors affecting relationships and personality traits to develop effective habits and emotional intelligence. They will create a habit formation plan that incorporates strategies for building positive habits and enhancing emotional intelligence. The project will involvemonitoring their progress over a set period and documenting changes in their interpersonal effectiveness. Students will present their results and reflections in a comprehensive report, highlighting the role of emotional intelligence in personal and professional settings.

Project 3: Motivation and Self-Assessment

Students will explore various motivation theories and engage in self-assessment exercises to understand their motivations and strengths. They will conduct a self-

appraisal using tools like mindmapping, competency mapping, and 360-degree feedback to identify areas for self-development. The project will include creating a personal development plan that outlines specific goals and strategies for improving self-esteem and achieving personal growth. Students will present their development plans and the rationale behind their strategies.

Project 4: Communication and Decision-Making Skills

Students will develop and demonstrate effective communication channels and decisionmaking skills. They will design and implement a communication plan that includes assertive communication techniques and strategies for conflict resolution. The project will involve role- playing scenarios to practice these skills in various contexts, such as workplace settings and personal relationships. Students will document their experiences and evaluate the effectiveness of their communication and decision-making strategies, presenting their findings and reflections in a report.

References Books:

- 1. Trotter, J. (2022). Perfect Communication: How to Improve Your Communication Skills. JeffreyTrotter.
- 2. Dubey, A., & Shukla, A. (2023). Personality Development and Communication Skills. LaxmiPublications Pvt. Ltd.